
! FP W V01 77?

AFATL-TR-88-117, VOL I

Program EAGLE User's Manual

Vol I-Introduction and Grid Applications

AD-A204 141
Lawrence E Lijewski
John Cipolia, et al.

AERODYNAMICS BRANCH
AEROMECHANICS DIVISION DTIC

OCT 1 2 1988

SEPTEMBER 1988 0

INTERIM REPORT FOR PERIOD OCTOBER 1986-SEP'TEMBER 1988

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE ARMAMENT LABORATORY
Air Force Systems Command I United States Air Force IEglin Air Force Base, Florida

/

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility nor any
obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data,
is not to be regarded by implication or otherwise in any manner construed,
as licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releas-
able to the National Technical Information Service (NTIS), where it will be
available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER
za X-

STEPHEN C. KORN
Technical Director, Aeromechanics Division

Please do not request copies of this report from the Air Force Armament
Laboratory. Copies may be obtained from DTIC. Address your request for
additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFATL/FXA , Eglin AFB FL 32542-5434, to help us maintain a current mailing
list.

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a specific
document.

lrI TN2 A {T FFEh
SECURITY CLASSIFICATION OF THIS PAGE

I or ApprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

S I NCL.ASSTF;,TFr)
__

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT
Approved for public release,distribution is

2b DECLASSIFICA rON/ DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFATL-TR-88-117, Vol I

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Aerodynamics Branch (If applicable) Aerodynamics Branch
Aeromechanics Division ATL/FXA Aeromechanics Division

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Armament Laboratory Air Force Armament Labortory
Eglin AFB FL 32542-5434 Eglin AFB FL 32542-5434

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Aer(m echanics Division AFATL/FX
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Air Force Arnimrent Liboratory PROGRAM PROJECT TASK WORK UNIT
Egi in Air !urcc Base, FliicI 32542-5434 ELEMENT NO. NO. NO ACCESSION NO.

.. .. _62602F . 2567 03 08
11. TITLE (Include Security Classification)
Prograi EAGLE User's Ma;nuaI
Volume 1: Introduction and Grid Applications

12. PERSONAL AUTHOR(S)
LAWRENCE L. LIJEWSKI, JOH-N CIPOLLA, JOE F. THOMPSON, BOYD GATLIN

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) I5. PAGE COUNT
110r I-i I FROM Oct 86 TOSep 88 September 1988 177

16. SUPPLEMENTARY NOTATION
Voluanes II and III are provided by Mississippi State University
Availability of report on verso of front cover

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Numerical Grid Generation Euler Solver

01 Elliptic Grid Generation Transonic Flow
Algebraic Grid Generation Implicit Algorithm

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report documents the theory and usage of Program EAGLE; a three-dimensional, multiblock
grid generation code and flow solver for arbitrarily shaped, advanced weapon airframe
configurations.

20 DISTRIBUTION /AVAILAB:UITY Or ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
-JUNCLASSIFIED/UNLIMITED M] SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVID)IJAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
-JOI[N CIPOLLA (904)882-3124 AFATL/FXA

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

PREFACE

This report was prepared by Dr Lawrence E. Lijewski and John Cipolla

of the Aerodynamics Branch (FXA), Aeromechanics Division, Air Force

Armament Laboratory (AFATL), Eglin Air Force Base, Florida, and Drs Joe F.

Thompson and Boyd Gatlin of Mississippi State University, Starkville, MS.

The work was performed under Work Unit 25670308 from I October 1986 to

30 September 1988.

This report documents the usage of the Program EAGLE. The principal

investigator of the surface and grid generation theory has been Dr Joe F.

Thompson of MISU. The principal investigators of the flow code theory have

been Dr David L. Whitfield of MSU, and Dr Dave M. Belk and Mr L. Bruce Simpson

of the Computational Fluid Dynamics Section (AFATL/FXA). Capt Jon S.

Mounts of the Computational Fluid Dynamics Section (AFATL/FXA) has

increased the utility of the flow code through user-oriented inputs and

outputs, extensive error checking, and calculation of component forces and

moments. The program manager for the development of Program EAGLE has been

Dr Lawrence E. Lijewski of the Computational Fluid Dynamics Section.

ACKNOWLEDGEMENTS

The authors would like to extend their appreciation to Lt Montgomery C.

Hughson, 4FATL/FXA, and Mr William Riner of Sverdrup whose aerodynamic

applications appear in this volume. Special thanks are also in order for

our administrative assistant, Nancy Elliott, who diligently typed and

proofed this report.

iii/iv blank

TABLE OF CONTENTS

Section Title Page

rKTRODUCTION 1

II JOBSTREAM AND PROGRAM SETUP 3

ITT INTERFACE BETWEEN ROUTINES 13

IV EAGLE BASICS 16

V APPLICATIONS 68

Accession For

NTIS Gl&I
DTIC TA:B

Ju:S] i c .

v !F:DistkI Spoclal

V

LIST OF FIGURES

Figure Title Page

1 Points, Segments, and Spacings20

2 Segments for Curves or Surfaces21

3 Numbering a Body of Revolution22

'4 GETEND Operation22

5 GETEND Using "FIRST" and "LAST" 23

6 SETNUM Operation with MATH = SUM-i 24

'7 SETNUM Operation with MATH = DIF+1 25

8 Dimensions of Surface Segment 26

9 Points Specification Along a Line29

10 Dimensions of a Surface 29

11 Specification of End Spacing 31

12 Construction of a Space Curve33

13 Angle and Direction Definitions34

14 Space Curve Using INSERT35

15 Insertion of a Segment36

16 Extraction of a Portion of a Surface 36

vi

LIST OF FIGURES (continued)

Figure Title Page

17 Coordinate Unit Vectors 37

18 Surface Gener ation 40

19 Rotation Using Bounding Curves . o 40

20 Surface Generation bv Stacking . . . o 42

21 Surface Generation Using Circle and Ellipse 42

22 Example of a Stack to Generate a Surface 43

23 Surface Generation Using BLEND 44

24 Surface Generation by Transfinite Interpolation • • • 45

25 INTSEC Operation 46

26 Intersection Curve to Generate a Surface . . o 48

27 Example of Use of Intersection Curve . . . 0 * 49

28 Curvilinear Coordinates 51

29 Curvilinear Coordinates Across Block Boundaries . . o 52

30 Segment Read 54

31 Point Locations 57

32 Indirect Point Referencing 58

vii

LIST OF FIGURES (continued)

Figure Title Page

33 Segment Specification 59

34 Griding an Existing Surface 67

35 Physical Space and Computational Space 69

36 'SWITCH' for Bottom Half of Airfoil 70

37 'INSERT' Merging Top and Bottom Half of Airfoil. . . . 71

38 Drawing the Half Circle for the Front Outer Boundary . 71

39 Detail of Spacing for Front Outer Boundary72

40 'SWITCH' for Points on Bottom Outer Boundary 72

41 Top Outer Boundary 73

42 Combining Segments to Form Complete Outer Boundary . . 73

43 'SWITCH' to Get Points Oriented Correctly on the

Wake Line . 73

44 Flow Field in Physical Space 79

45 Computational Space (Block 1 and Block 2). 80

46 Curve Describing Outer Surface81

47 Curve of Outer Surface Transformed to Global

Coordinates 81

viii

LIST OF FIGURES (continued)

Figure Title Page

48 Boundary of Outer Surface of Solution Region82

49 Stagnation Line Definition83

50 Block 1, Stagnation Surface84

51 Block 2, Stagnation Surface84

52 Exit-Plane Definition85

53 Block 1, Exit Boundary 86

54 Block 2, Exit Boundary86

55 Line Segment 1 of Vehicle Boundary 87

56 Line Segment 2 of Vehicle Boundary88

57 insertion of Line Segment 2 to Segment I 88

58 Point Redistribution of Line Segment 389

59 Line Segment 4 of Vehicle Boundary90

60 Insertion of Line Segment 3 to End of Line

Segment 4 .. . 90

61 Block 1, Vehicle Boundary 91

62 Block 2, Boundary of Outer Surface of Solution

Region 92

ix

LIST OF FIGURES (continued)

Figure Title Page

S Block 2, Vehicle Boundary93

6i Connectivity of Block I to Block 297

65 Files Created by Boundary Program and Their

Location . 98

66 Block to Block Interfaces by Cuts99

Description of Flow Region Generated by Grid

Program 101

(P Ogive-Cylinder-Ogive with Fins 104

69 Ogive-Cylinder-Ogive Boundary with Sting 108

70 46 x 2 Point Fin Tip Surface 109

71 Fin Surface 113

72 Missile Body Surface 115

73 Outer Boundary Outline 120

74 Outer Boundary Surface 122

7 Back Boundary Surface 123

76 Single Block Format 139

77 Single Block Format (Exploded View) 142

x

LIST OF FIGURES (concluded)

Figure Title Page

-78 Four Block Layout 148

79 Front View (4I Block Grid) 149

80 Side View (14 Block Grid) 150

81 Three Finned-Body Configuration. 155

82 3O-Block Grid Scheme 156

83 Elliptic Grid Cross Section, Frontal View. 157

814 Al1,euraic, EliiptiQ Grid Cross-Section, Side

View 158

85 Perspective View of' Wing-Pylon-Store, C-0 Grid . . .161

86 Wing with Pylon, Store, and Sting162

87 Initial Grid Around Wing, Pylon, and Store

88 Separated Grid Around Wing, Pylon, and Store

(Algebraic). 1614

LIST OF TABLES

Table Title Page

IProgran EAGLE -Adjustable Dimension Parameters . . . 9

xi/xii (Blank)

SECTION I

INTRODUCTION

Program EAGLE (Eglin Arbitrary Geometry ImpLicit Euler) is a multiblock

grid generation and steady-state flow solver system. This system combines a

boundary conforming surface generation scheme, a composite block structure

grid generation scheme and a multiblock , implicit Euler flow solver

algorithm. The three codes are intended to be used sequentially from the

definition of the configuration under study to the flow solution about the

configuration. EAGLE has been specifically designed to aid in the analysis of

both freestream and interference flowfield configurations.

These configurations can be comprised of single or multiple bodies ranging

from simple axisymmetric airframes to complex aircraft shapes with external

weapons. Each body can be arbitrarily shaped with or without multiple lifting

surfaces.

Program EAGLE is written to compile and execute efficiently on any Cray

machine with or without Solid State Disk (SSD) devices. Also, the code uses

namelist inputs which are supported by all Cray machines using the Fortran

Compiler CFT77. The use of namelist inputs makes it easier for the user to

understand the inputs and to operate Program EAGLE.

Documentation for Program EAGLE is set up as follows:

Volume I: Introduction and Applications

Volume II: Surface Generation Routine

Volume III: Grid Generation Routine

Volume IV: Flow Solver Routine

Viflume I is an introduction to the basics of EAGLE and its use, including

several examples of weapon airframe and multiple body configurations.

Volume II deals solely with the theory and operation of the surface

generation routine.

Volume III describes the theory and operation of the grid generation

routine.

Volume IV covers the theory and operation of the Euler flow solver and

presents sample surface pressure distributions of some of the applications in

Volume I.

Program EAGLE has been a joint development effort between the Air Force

Armament Laboratory's (AFATL) Aerodynamics Branch (FXA) and Mississippi State

University's (MSU) Department of Aerospace Engineering.

2I

SECTION II

JOBSTREAM AND PROGRAM SETUP

As mentioned earlier, Program EAGLE has been developed for Cray systems

and is optimized for Cray X-MP machines using Solid State Disk (SSD) devices.

Also, Program EAGLE has been written for use on Cray-2 machines. Both

versions are in use and available through the Defense Technical Information

Center (DTIC).

This section will concentrate on describing the set up of the jobstream

for both the Cray X-MP and Cray-2, along with a full description of the

various dimensions that can be updated for particular problems to conserve

storage. The user is advised to review the installation manuals covering the

Job Control Language (JCL) for the particular system used.

SURFACE GENERATION ROUTINE

A typical jobstream for the surface generation routine is listed below.

The sample jobstreams reflect use on the CDC/SIS Cray X-MP, but the sequency

of operations is similar on other machines.

1) JOB, T(jobtime), L (job priority).

2) ACCOUNT, (USERNAME), (PASSWORD), (PROJECT).

3) GET, SOURCE = (SURFACE CODE)/CI = TTY.

4) CFT, I = SOURCE, B = BINSURF.

5) SEGLDR, GO, CMD = 'BIN = BINSURF'

6) PUT, FT50 SURFILE.

7) PUT, FT51 PLOT/CO = TTY.

8) DFD, DAYFILE

9) PUT, DAYFILE/CO = TTY.

10) PUT, $OUT = OUTFILE/CO = TTY.

11) EOR

12) E$INPUT ITEM 'POINT', POINT 1, R 0.0, 0.0, 0.0 $

3

Surface inputs

n) E$INPUT ITEM 'END'$

The first two lines are the generic job and account statements normally

required. Line 3 gets the surface generation routine and compiles it in line

4, saving the compiled file as BINSURF. Line 5 loads and executes BINSURF.

Line 6 saves the file required by the grid generation routine as SURFILE.

Line 7 saves a formatted file for plotting of a specific segment or segments

of the generated surfaces (see Section 4). Lines 8-10 save the output and

dayfiles for debugging purposes. Line 12 begins the namelist inputs.

GRID GENERATION ROUTINE

A typical jobstream for the grid generation routine is listed below.

1) JOB, T(job time), L(job priority), SSDXXXXX.

2) ACCOUNT, (USERNAME), (PASSWORD), (PROJECT).

3) GET, SURFILE.

4) ASSIGN, DN = SURFILE, A = FT11.

5) GET, SOURCE = (GRIDCODE)/CI = TTY.

6) ASSIGN, DN = SSD07, A = FT07, DV = SSD, NOF.

7) ASSIGN, DN = SSD09, A = FT09, DV = SSD, NOF.

8) ASSIGN, DN = SSD10, A = FT10, DV = SSD, NOF.

9) ASSIGN, DN = SSD20, A = FT20, DV = SSD, NOF.

10) ASSIGN, DN = SSD31, A = FT31, DV = SSD, NOF.

11) ASSIGN, DN = SSD (NB+30), A = F(NB+30), DV = SSD, NOF.

12) CFT, I SOURCE, B = BINGRID.

13) SEGLDR, GO, CMD = 'BIN = BINGRID'.

14) 1JT, $OUT = OUTFILE/CO = TTY.

15) PUT, FTO8 = PLTGRID/CO = TTY.

16) PUT, FT12 = GRID.

4

17) DFD, DAYFILE.

18) PUT, DAYFILE/CO = TTY.

19) EOR

20) E$INPUT ITEM = 'STORE', FILE = 12, ITMAX 50$

GRID INPUTS

21) E$INPUT ITEM 'END'$

22) E$OUTPUT ITEM 'ERROR'$

GRID OUTPUTS

23) E$OUTPUT ITEM 'END'$

The first two lines are as before with the exception of the SSD parameter.

When using Solid State Disk (SSD), the JOB statement requires an

additional parameter. For the JOB statement, the user must add "SSDXXXXX"

where XXXXX is the total number of blocks of SSD required. Each block is

equivalent to 512 words, and the number of blocks specified should be

divisible by 32. The third line gets the file that was saved in the surface

code containing the boundary surfaces. Line 4 assigns this file to FT11.

Line 5 gets the grid generation routine. Lines 6 through 9 assign four SSD

files for internal use by the code. Line 10 begins a series of ASSIGN

statements; one statement for each block in the grid. These SSD files are

labeled as "30 plus the block number" with an example of the last block, NB,

statement as line 11. When using SSD, the ASSIGN statement requires an

additional parameter. The ASSIGN statement requires the device type to be

specifLed as "DV=SSD" for each file that will use SSD. In other words, when

5

working a multiblock problem, the parameter "DV=SSD", in the ASSIGN

statement, must be included to specify the file"30+XX" as an SSD file (where

XX is a user supplied file number with certain restrictions mentioned in

Volume II). One optional parameter that is of importance is the NOF term (NO

OVERFLOW). This term assures that if the SSD llait in the JOB statement is

exceeded while using the particular SSD file, program execution will stop.

Without this, the program will continue by writing to conventional disk.

This can become extremely expensive for large problems where conventional disk

memory is accessed many times. Of course, other parameters are available and

will not be discussed here. The user should refer to the installation manuals

for more detailed information.

Line 12 compiles the source code and saves the compiled version as

BINGRID. Line 13 then loads and executes BINGRID. Line 14 saves the output

file for debugging while a formatted file for plotting specific segments of

the grid is saved in line 15. Line 16 saves the actual grid to be used as an

input to the flow solver. Lines 17 and 18 establish and save the day file

record of the job. Line 20 begins the grid inputs. Note the file number to

store the grid (12) is the same as that in line 16. Line 22 begins the grid

outputs which are useful in debugging and tracking the convergence of the grid

solution.

FLOW SOLVER ROUTINE

A typical jobstream for the flow solver routine is listed below.

1) JOB, T(jobtime), L(job priority), SSDXXXXX.

2) ACCOUNT, (username), (password), (project)

3) GET, GRID.

4) ASSIGN, DN = GRID, A = FT10.

5) GET, = (FLOWCODE)/CI = TTY.

6) CFT, I = (FLOWCODE), B = BINFLOW.

7) SEGLOR, GO, CMD= 'BIN BINFLOW'.

8) PUT, FT01 = (RESTART).

9) PUT, $OUT = OUTFILE/CO = TTY.

10) DFD, DAYFILE.

11) PUT, DAYFILE/CO = TTY.

6

12) EOR

13) E&FINPUT CFL = 5.0, FSMACH 0.95, NP : 1, NT = 1000$

0e

EULER INPUTS

14) E$BCIN IBTYPE 0$

Lines 1 and 2 are the same as those for the grid generation routine.

Line 3 gets the grid file and line 4 assigns it to FT1O. The flow code is

obtained in line 5, compiled in line 6 and loaded and executed in line 7.

Line 8 saves a restart file to be used if additional iterations of the flow

code are required later. Lines 9-11 save the output and dayfiles. Line 13

begins the flow code inputs.

ADJUSTABLE DIMENSIONS

Program EAGLE has several dimensions that can be changed to meet

particular job requirements (or to keep storage to a minimum) by editing the

applicable code and making global changes on specific parameters. These

dimensions can be broken down into three sections, one applicable to each

code. These dimensional variables with their preset values are shown in

Table 1.

SURFACE

The variables DIMI and DIM2 are the maximum number of points that can

describe a curve (DIMI) or a surface (DIMI x DIM2). In other words, when

developing a curve with NI points or a surface with NI x N2 points, then

(for a curve) N1 < DIMI

(for a surface) NI <DIMI and N2 < DIM2

7

The variables DFIL and DCOR are the maximum number of FILEOUTs and FILEINs

and COREOUTs and COREINs, respectively, allowed within the surface generation

input stream (see Volume II, Section B.2).

DIMV is the maximum number of values that can be read in Namelist. This

number cannot be greater than DIMI for a curve, or DIMI x DIM2 for a surface

(see Volume II, Section I-BI).

The variables NVALMX and DVAL are used when storing a sum, difference, or

a product. The maximum number of values in the calculation cannot exceed

NVALMX, while the maximum number of in-core storage locations cannot exceed

DVAL (see Volume II, Section I-BI).

8

TABLE 1. PROGRAM EAGLE - ADJUSTABLE DIMENSION PARAMETERS

Routines Dimension Variables Preset Values

Surface DIM1 501

DIM2 110

DFIL 100

DCOR 500

D£MV 2000

DPNT 500
NVALMX 100

DVAL 500

DEMSS 10000

NS 1

BASE 30

DSUB 20

J M8 43

DIMO 500300
DPNT 1000

DSEG 1000

NVALMX 100

DVAL 500

D[MC 2000

DIMT 35000
DMRB 10300

DIMP 100

DIMS 10000

DIML 170

DNEU 6

DREF 6
OORT 6

DIMI 10000
DMNT 1

DMOT 1000

DIMR 1

DIMN 1

DIMO 1

DIMG 1

FLow MAXSURF 20
MAXBLK 24

MAXBC 500

S 1 (for Cray X-MP)

S 100,000,000 (for Cray-2)

9

The maximum number of points that can be placed in core storage before

automatically writing out to a file is given by DIMSS. This value is difficult

to determine; however, the absolute maximum can be estimated to be

DIMSS > 6 x BMAX x (DIMI x DIM2)

where BMAX is the maximum number of blocks (see Volume II, Section 1-BI). This,

of course, will require large amounts of in-core memory. The user will have

to establish a desirable medium between the amount of in-core storage used and

the amount written to a file.

Finally, DPNT is the maximum number of numbered points that can be used

(see Volume II, Section I-BI).

GRID

The grid code prints a summary of resources actually used to guide the

user in considerations of whether to change the adjustable dimension to reduce

storage.

The variable NS gives the number of surrounding layers for each block.

The variable BASE indicates the base file which will be used as scratch

files for the individual block grids starting with BASE+1 to BASE+BMAX. Note

that files 1 through 10 and 20 cannot be used. These are reserved as scratch

files for code usage.

The maximum number of sub-blocks is given by DSUB, while the maximum number

of blocks is given by DIMB (see Volume III, Section II-A2).

The maximum number of points in a block is given by DIMT. This variable

can be determined by the following equation:

DIMT > (NI + 2 x NS) x (N2 + 2 x NS) x (N3 + 2 x NS)

and must satisfy the condition:

15 x DIMT > 12 x DIML
2

where:

Ni, N2, N3 - points in the three directions of a block, and

10

DIML - is the maximum number of points on a block edge.

The variable DMRR also is the maximum number of points on a block boundary.

It is determined from:

DMRB > 8 + 2 x [N1+NS)x(N2+NS) + (N2+NS)x(N3+NS) + (N3+NS)x(Nl+NS)] -

4 x [(N1+NS) + (N2+NS) + (N3+NS)]

The variable DIMP specifies the maximum number of points that can he read in

from the namelist at one time.

The maximum number of points on a block side is given by the variable DIMS

and can be determined from the following equation:

DIMS > MAX(NlxN2, N2xN3, N3xN1)

The maximum number of points on a block edge is given by the variable

OIML. DIML can be determined from the following equation:

DIML > MAX(NI, N2, N3)

rhe variables DNEU, OORT, and DREF specify the maximum number of Neumann,

orthogonal, and reflective boundary sections, respectively (see Volume Ill,

Section II-A2).

The variables nIMI, DMNT, and DMOT specify the maximum number of image,

Neumann, and orthogonal boundary points in a block, respectively. These

variables cannot be determined explicitly. The maximum would be, of course,

DIMT; however, this would be overestimating the maximum. The user will have

to determine these three values.

The variable, DIMR, is the total number of points in all the blocks, while

the other three variables, DIMN, DIMO, and DIMG are the total number of

Neumann, orthogonal, and image points in all the blocks, respectively. These

four variables are irrelevant and are set to one when file space, rather than

in-core memory space, is used (i.e., when KSTORE = "FILE", see Volume Il,

Section II-A2). Otherwise, when KSTORE = "CORE", these variables set up the

11

arrays for in-core memory usage only. DIMR can be determined by the following

equation:

DMAX

DIMR > [Nli+2xNS) x (N2i+2xNS) x (N3i+2xNS)]

i+1

The other three variables cannot be determined explicity. The user must

estimate these values.

Tho parameter D1IMD is the maximum number of boundary points that can be

included on one combined read of data filed by the COMBINE option of the

surface code (see Volume II, Section I-Bi and Volume III, Section II-A2).

Similarly, DSEG is the maximum number of boundary segments that can be read

from such a file.

The parameter DIMC is the maximum number of points allowed on a curved

surface on which a grid is to be generated. This parameter can be set to I

for 3D operation (and for 2D operation on a plane).

The parameters DPNT, NVALMX, and DVAL have the same meaning given above

for the surface code.

FLOW

The variable MAXSURF limits the number of surfaces on which force and

moment values and coefficients are calculated. One surface could be as large

as the entire configuration or as small as one cell.

MAXBLK limits the number of grid blocks that can be used.

MAXBC limits the number of boundary conditions that can be read in. Each

BCIN input line with IBTYPE equal 1,2,3 or 6 count as one boundary condition

while those equal to 4 or 5 count as two. The sum for all BCIN lines must not

exceed MAXBC.

The ribbon vector S contains all the variables calculated within the code

for all blocks. On the Cray X-MP where SSD files are opened and closed inside

the code, transparent to the user, the value is set to 1 and need not be

changed. On the Cray-2, all the variables are stacked end to end for each

block and is subject to the limitation on S. For most problems, the preset

value is sufficient but it can be raised for large problems or lowered to save

core storage costs.

12

SECTION III

INTERFACE BETWEEN ROUTINES

The generation of the six computational surfaces (four boundaries, in

2-D) of the blocks in the SURFACE GENERATION routine feeds into the GRID

GENERATION routine to generate a 3-D field grid. The formats of these outputs

from the SURFACE or GRID routines may be of importance to those who may wish

to replace any of the three primary routines or add any of their own routines.

As discussed previously, the SURFACE routine outputs the coordinate files

to be used by the GRID routine as inputs to develop the complete field grid.

These output coordinate files are written, unformatted, to a user specified or

files using a COMBINE statement or individual FILEOUT statement file (see

Volume 2 for details) from a three-dimensional array storing the coordinates.

The format of this write statement is as follows:

DO 20 C2 = 1, N2

DO 20 C1 = 1, Ni

20 WRITE (10+XX) (F(CI, C1, C2), CI = 1, 3)

Where:

C1 and N1 - number of points in 1st direction (faster running direction)

C2 and N2 - number of points in 2nd direction

C1 - Cartesian components

CI = 1 -> X

CI =2 -> Y

CI = 3 -> Z

F - three-dimensional array storing the Cartesian coordinates of the

surfaces (or curves in 2-D) (REAL)

The GRID routine generates an unformatted output file dependent on the

user selection for the parameter "OUTER" in the grid input list (see Volume

13

IlI for details). Four options exist for "OUTER" - "YES", "NO", "BOUND", and

"SEPARATE".

If OUTER = "YES" then subroutine WRTGRD outputs the classification of the

points, the surrounding layer of points, and the Cartesian coordinates for

each block on file "GRIDFIL. The format for these write statements is:

Write (GRIDFIL) BMAX, ((CMAX (CI,B), CI n 1,3), B = 1, BMAX

DO 3001 B 1, BMAX

DO 3001 C3 IS, CMAX (3,B) + NS

DO 3001 C2 IS, CMAX (2,B) + NS

DO 3001 C1 IS, CMAX (1,B) + NS

Write (GRIDFIL) Type (B, C1, C2, C3)

Write (GRIDFIL) (Image CI, B, C1, C2, C3), CI = 0, 3)

3001 Write (GRIDFIL) (R(CI, B, C1, C2, C3), CI = 1,3)

Where: BMAX - Maximum number of blocks (Integer)

IS - Integer value specified in parameter statement

NS - Integer value specified in parameter statement (see Section II

for definition)

CMAX - Two-dimensional array containing the maximum number of points

in each direction for every block (Integer)

TYPE - Four-dimensional array containing the classification of all the

points for each block

IMAGE - Five-dimensional array containing the surrounding layer of

points for each block (Real)

14

R - Three-dimensional array containing the Cartesian coordinates of

every point for each block (Real)

If the use- selects OUTER = "NO", then Subroutine WRTRRR outputs the

Cartesian coordinates only for each block on file "GRIDFIL". The format for

these write statements is:

Write (GRIDFIL) BMAX, ((CMAX(CI,B), CI + 1,3), B = 1, BMAX)

DO 3002 B 1, BMAX

DO 3002 C3 = 1, CMAX(3,B)

DO 3002 C2 = 1, CMAX(2,B)

DO 3002 Cl - 1, CMAX(1,B)

3002 Write (GRIDFIL) (R(CI, B, C1, C2, C3) CI = 1,3)

The option OUTER = "BOUND" operator as does "SEPARATE", but omits

the first line containing BMAX and CMAX.

For the last option - OUTER + "SEPARATE" - Subroutine WRTXYZ will write

the Cartesian coordinates in three separate arrays for each block on the files

"BASE+B" where B is the block number. The format for these write statements

is:

Write (GRIDFIL) BMAX, ((CMAX(CI, B), CI=1,3), B=1, BMAX)

DO 5000 C3 = 1, CMAX(3,B)

DO 5000 C2 = 1, CMAX(2,B)

DO 5000 C1 = I, CMAX(0,B)

X(Cl, C2, C3) = R(l,B, C1, C2, C3)

X(Cl, C2, C3) = R(2,B,C1,C2,C3)

X(C1, C2, C3) = R(3,B,Cl,C2,C3)

REWIND BASE+B

WHITE (BASE+B) X,Y,Z

Where: X,Y, and Z - Three-dimensional arrays containing the X, Y, and Z

coordinates, respectively, for every point (Real)

The outputs of the four options can be used by any external flow code

or plot code. The Program EAGLE - Flow Solver uses option 2.

15

SECTION IV

EAGLE BASICS

1. THE EAGLE CODE

-::t EAGLE grid code is a general three-dimensional elliptic grid gen-

eralion system based on a composite block structure. This code allows

any number of blocks to be used to fill an arbitrary three-dimensional

region. Any block can be linked to any other block (or to itself), with

complete (or lesser) continuity across the block interfaces as specified

by input. In the case of complete continuity, the interface is a branch

cut, and the code establishes a correspondence across the interface us-

ing a surrounding layer of points outside the blocks. This allows

points on the interface to be treated just as all other points, so that

there is no loss of continuity. The physical location of the interface

is thus totally unspecified in this case, being determined by the code.

This code uses an elliptic generation system with automatic evalua-

tion of control functions, either directly from the initial algebraic

grid and then smoothed, or by interpolation from the boundary point dis-

tributions. In the former case the smoothing is done only in the two

directions other than that of the control function. This allows the

relative spacing of the algebraic grid to be retained but on a smoother

grid from the elliptic system. In the latter case, the arc length and

curvature contributions to the control functions are evaluaed and in-

terpolated separately into the field from the appropriate boundaries.

The control function at each point in the field is then formed by com-

bining the interpolated elements. This procedure allows very general

regions, with widely varying boundary curvature, to be treated.

The control functions can also be determined automatically to provide

orthogonality at boundaries with specified normal spacing. Here the

iterative adjustments in the control functions are made by increments

radiated into the field from boundary points where orthogonality has not

yet, been attained. This allows the basic control function structure

evaluated from the algebraic grid, or from the boundary point distribu-

tions, to be retained and thus relieves the iterative process from the

need to establish this basic geometric form of the control functions.

16

Alternatively, boundary orthogonality can be achieved through Neumann

boundary conditions which allow the boundary points to move over a sur-

face spline, the boundary point locations being located by Newton it-

eration on the spline to be either at the foot of normals to the adja-

cent field points or on extrapolated straight lines from the two adja-

cent field points. Provision is also made for mirror-image reflective

boundary conditions on symmetry planes.

Although written for 3D, the code can operate in a 2D mode on either

a plane or curved surface. In the case of a curved surface, the surface

is splined and the generation is done in terms of surface parametric

coordinates.

The code includes an algebraic three-dimensional generation system

based on transfinite interpolation (using either Lagrange or Hermite

interpolation) for the generation of an initial grid to start the it-

erative solution of the elliptic generation system. This feature also

allows the code to be run as an algebraic generation system if desired,

taking this initial algebraic grid as the final product. The interpola-

tion, though defaulted to complete transfinite interpolation from all

boundaries, can be restricted by input to any combination of directions

or lesser degrees of interpolation, and the form (Lagrange, Hermite, or

incomplete Hermite) can be different in different directions or in dif-

ferent blocks. The blending functions can be linear or, more appropri-

ately, based on interpolated arc length from the boundary point

distributions.

Blocks can be divided into sub-blocks for the purpose of generation

of the algebraic grid and the control functions. Here point distribu-

tions on the sides of the sub-blocks can either be specified or gener-

ated by transfinite interpolation from the edges of the side. This

allows additional control over the grid in general configurations and is

particularly useful in cases where point distributions need to be speci-

fied in the interior of a block, or to prevent grid overlap in highly

curved regions. The code will automatically interpolate for any values

on block interfaces, or on sub-block sides, that are not read in.

17

The composite structure is such that completely general configura-

tions can be treated, the arrangement of the blocks being specified by

input, without modification of the code. The input is user-oriented and

designed for brevity and easy recognition. For example, the establish-

,hn'm of correspondence, i.e. a branch cut, between two blocks requires

only the simple NAMELIST input statement,

$INPUT ITEM = "CUT", START = , , , END - , , , BLOCK =

ISTART = , , _, END = , , , IBLOCK ,

where START and END give the three indices of two opposite corners of

the cut section on one block (BLOCK), while ISTART and IEND give the

corners of the corresponding section on the other block (IBLOCK). The

code sets up the point correspondence on the surrounding layers for com-

plete continuity without additional input instructions. A NAMELIST emu-

lator is available for machines that do not support NAMELIST input.

The code does extensive error checking to assist the user in the in-

put construction, and is designed to note any omissions on the input and

not to stop without an explanation.

Detailed discussion of both the use and the operation of the code is

given in Volumes II and III. This present section provides a quick in-

troduction to the use of the code, covering the essential and most used

features. Volumes II and III should be consulted for complete informa-

tion on all features.

The code is written in modular form so that components can be readily

replaced. The code is vectorized wherever practical and includes provi-

sion for separate storage of each block on the CRAY solid-state disk (or

conventional disk) to allow very large grids to be generated. The vari-

ous blocks can thus either be kept on disk file, with only a single

block in core at one time (e.g. CRAY X-MP), or can all be kept in core

without using disk storage (e.g. CRAY 2).

18

2. BOUNDARY CODE

The boundary code (Volume II) builds up the boundary segments for

input to the grid code (Volume III). This is done by a series of opera-

tions which read in data, create certain geometric forms, perform geo-

metric transformations, and make combinations.

Each of these operations is invoked by a NAMELIST input statement

(called an "operation statement" here) of the form

$INPUT ITEM =" ", --- $,

with the alphanumeric name of the particular operation within the

quotes, and the relevant quantities for that operation included on the

operation statement as described below. The result (a curve or surface

segment) of each such operation is automatically in position to be acted

on by the next operation. The resulting segment can also be assigned a

unique segment number and stored for later access by including

COREOUT - segment number

on the operation statement. This segment can then be accessed by in-

cluding

COREIN = segment number

on a later operation statement.

The segment numbers for completed boundary segments can be carried

over from the boundary code into the grid code and used to address these

segments there as well. However, it is not necessary that the boundary

code be coupled with the grid code in this manner, for the grid code can

operate independently, accepting boundary segments from any source. This

coupling does, however, allow changes in the number of points, or other

factors, on boundary segments to be made locally in one place in the

input runstream for the boundary code without requiring corresponding

changes in the runstream for the grid code.

19

a. Indirect Addressing

In the construction of the boundary segments in the boundary code, it

will be necessary to specify certain points in space, such as the end

points of lines and curves, etc., on the operation statements. Such a

point can be indicated directly by supplying its three Cartesian coordi-

nates, or indirectly by an assigned point number to which the three Car-

tesian coordinates have been attached by another operation statement for

that purpose. Similarly, the number of points to be placed on a curve

can be either given directly or can be attached to the segment number

assigned to the curve. Spacings can also be assigned numbers by which

they can be identified whenever used. These indirect identification

features are not required, and all quantities can be given directly

wherever used if desired. However, since many quantities are used more

than once, these features do allow changes to be made locally in one

place in the runstream without corresponding changes being required

throughout the runstream.

If this indirect addressing of quantities is used, there will typi-

cally be point numbers, segment numbers, and spacing numbers (indicated

by numbers in circles, squares, and triangles, respectively, in the fol-

lowing diagram):

SEGMENT

SLPACING

POINT Figure 1. Points, Segments, and
Spacings

Thus, curve segment #1 here connects points #1 and #2, and the points

adjacent to the ends of the curve are to be placed at spacings #1 and

#2. No relation is implied among the point, segment, or spacing nn-

20

bers, i.e., neither segment #1 nor spacing #1 need be associated with

point #1. There may be surface segments, as well as curve segments, as

shown below:

0 0

Figure 2. Segments for Curves or Surfaces

Here surface segment #5 is bordered by the four curve segments #1,2,3,4,

which are terminated by the points #1,2,3,4.

No distinction is made between curve segments and surface segments in

regard to numbering, so the same number cannot be used for both a curve

and surface segment. Point, segment, and spacing numbers are unrelated,

however, so that the same number can be used for one of each as in the

above illustrations. kgain, no relation between the point and segment

numbers is implied, and it is not necessary that the numbers of either

be consecutive, or that all numbers be used, i.e., gaps can be left. It

is, in facL, often helpful to use groups of numbers, e.g. 100's, 200's,

etc. for certain natural groupings of points or segments. For example, a

group of points on a 00 meridional plane for a body of revolution might

be numbered 1-10, while the corresponding points on the 900, 1800, and

2700 planes are numbered 101-110, 201-210, and 301-310, respectively:

21

tC 105

106

Figure 3. Numbering a Body of Revolution

Point Numbers

In this indirect addressing mode, the three Cartesian coordinates can

be attached to a point number in two ways:

(1) directly, through the operation statement

$INPUT ITEM - "POINT", POINT = point number, R = x,y,z $

(2) from a point on an existing segment, through the two consecutive

operation statements

$INPUT ITEM = "GETEND", COREIN = segment number, POINT = i,j $

$INPUT ITEM = "POINT", POINT = point number $

Here (i,j) are the indices of the point on the segment. (This seg-

ment must have been generated by some previous operation and stored

there by an included COREOUT-segment number.)

K (i,j) \

Figure 4. GETEND Operation

22

These two consecutive operations attach the Cartesian coordinates of

the point at (i,j) on the existing segment indicated by COREIN on the

"GETEND" statement to the point number indicated by POINT on the

"POINT" statement. This point can then be used in later operations.

If the existing segment is a curve, then POINT=i,j on the "GETEND"

statement is replaced by POINT=i, and if the point intended is one of

the end points of this curve, even by POINT="FIRST" or "LAST",

indicating the first or last end point, respectively.

FIRST

LAST

Figure 5. GETEND Using "FIRST" and "LAST"

With this indirect addressing, the point number (a single positive

integer) can then be given in place of the three Cartesian coordinates

on ill cperation statements requiring the coordinates of that point.

It is the presence of a single number, rather than three, that keys

the code to obtain the corresponding three Cartesian coordinates

previously assigned to that point from storage. This assignment must,

of course, have been done by a prior operation statement with

ITEM:"POINT" as explained above.

23

Number of Points on a Curve Segment

The number of points to be on a curve segment can be set in two ways

also:

(1) directly, through the operation statement

$INPUT ITEM = "SETNUM", SEGMENT = segment number,

POINTS = number of points $

2) as a sum or difference of the number of points on other segments,

through the operation statement

$INPUT ITEM = "SETNUM", SEGMENT = segment number,

ITERMS = -other segment number, -other segment number,

MATH = " " $

Here the number of points on each of the other segments included

in ITERMS must already have been set by previous "SETNUJM" opera-

tions. If MATH="SUM-1", the number of points on the segment will

be calculated as the sum of the number of points on all of the

other segments (any number of other segments) given for ITERMS.

This sum is performed by adding the number of points, less one, so

that the ends are not counted twice, on each succeeding segment in

ITERMS:

6 POINTS

-- - 5 POINTS

13 POINTS

Figure 6. SETNUM Operation with MATH = SUM-1

24

(Since "SUM-I" is the default, MATH can actually be omitted from

the statement in this case.) If MATH="DIF+I" the number of points

is calculated by subtracting the number of points, less one, on the

succeeding segments in ITERMS from that on the first:

10 POINTS

6 POINTS 5 POINTS

Figure 7. SETNUM Operation with MATH = DIF+l

There are actually some other possibilities for MATH, and Volume II

should be consulted. The two given here are, however, by far the

most common. Also, note that in the above description, each seg-

ment number in ITERMS is preceded by a minus sign. The omission of

this minus sign causes the entry to be interpreted directly as a

number of points, instead of a segment number, to be used in the

calculation. ITERMS can, in fact, contain a mixture of both of

these forms.

Although both curve and surface segments can be numbered, numbers of

points can be set by "SETNUM" only on curve segments. The two dimen-

sions of a surface segment can be set by numbering two of the curve seg-

ments forming the edges of the surface in two directions and using two

operation statements with ITEM="SETNUM" to set the numbers of points on

these two curve segments.

With this indirect addressing, the negative of the segment number can

then be given in place of the number of points on all operation state-

ments requiring the number of points on that segment. For a surface

segment, for which the number of points in each of two directions must

be specified, the indirect addressing can be used for either or both

25

directions. In this case the segment numbers used in the indirect ad-

dressing are those of curve segments forming edges of the surface in two

directions, not the surface segment number itself:

curvurv

segment

Figure 8. Dimensions of Surface Segment

It is the presence of the minus sign preceding the integer segment num-

ber that keys the code to recognize the integer as a segment number and

thus to obtain the corresponding number of points assigned to that seg-

ment from storage. This assignment must, of course, have been done by a

prior operation statement with ITEM="SETNUM" as explained above. Once

the number of points on a curve segment is specified by ITEM-"SETNUM",

it can be changed only through a subsequent SETNUM operation.

Spacings

Finally, spacings can be assigned spacing numbers in two ways:

(1) directly, through the statement

$INPUT ITEM = "SETVAL", NUMBER = spacing number,

VALUE = spacing $

(2) as a sum, difference, or product of other spacings through the

statement

$INPUT ITEM = "SETVAL", NUMBER = spdcing number,

TERMS - -other spacing number, -other spacing number, --- ,

MATH = "" $

26

Here the spacings indicated by the other spacing numbers (integer)

in TERMS must already have been given values by previous "SETVAL"

operations. There are three possible types of calculations, indi-

cated by "SUM", "DIF", or "PRODUCT" for MATH. The sum and product

are performed for all entries in TERMS (any number), while the dif-

ference is subtraction of the second entry from the first. The

minus sign preceding the spacing numbers in TERMS indicates that

these are spacing numbers of spacings to be used in the calcula-

tion. The omission of this sign causes the number given (now a

real number) to be taken as a value itself to be used in the c;alcu-

lation. It is possible to mix spacing numbers and values in

TERMS.

With this indirect addressing, the negative of the spacing number can

then be given in place of the spacing on all operation statements re-

quiring that spacing. It is the presence of a negative integer, instead

of a positive number, that keys the code to obtain the spacing assigned

to that number from storage. This assignment must, of course, have been

done by a prior operation statement with ITEM="SETVAL" as explained

above.

The same identification number cannot be used for more than one spac-

ing, although these spacing numbers are unrelated to point and segment

numbers.

Settings

Although it is logical to group the operation statements that set the

coordinates points ("POINT"), the number of points on segments

("SETNUM"), and the value of spacings ("SETVAL"), at the beginning of

the runstream for the boundary code, such statements can be scattered

throughout the runstream if desired. The only requirement is that the

setting of a quantity be done before this indirect addressing is used

for that quantity on other operation statements. These quantities can,

in fact, be reset at different points in the runstream if it is useful

to do so.

27

b. Segment Construction

The indirect addressing mode just discussed is an optional feature of

the boundary code. The operations of this code build up the boundary

segments by constructing, combining, and manipulating surface and curve

segments. The coordinates of curve end points, the number of points on

segments, and the values of spacings involved in these operations can he

set using this indirect addressing or can be set directly on each opera-

tion statement. The formation of a boundary segment for input to the

grid code typically involves a sequence of these operations, each of

which may use the result of the previous operation or some other preced-

ing operation. Defaults are reset after each operation.

Reading Segments

The most basic operation is, of course, simply to read in the Car-

tesian coordinates of a set of points which oonstitute a curve or sur-

face segment. This is done by the operation statement

$INPUT ITEM = "CURRENT",

POINTS = dimensions of curve or surface,

VALUES - x, y, z,

x, y, z,

x, y, z, COREOUT - segment number $

The inclusion of COREOUT, which is optional, assigns a segment number to

the curve or surface as read in, as noted above, by which the segment can

be accessed by later operation statements. If the set of points being

read in constitutes a curve, then the total number of points being read

is indicated by a single integer given for POINTS,

28

POINTS

Figure 9. Points Specification Along a Line

while for a surface two integers are given. In the latter case the

first of the two integers indicates the number of points in the faster

running direction (#1 direction) on the surface when stored on a file:

POINTS(i), POINTS(2)

I, POINTS(2

2 a'%..O.. N TS(I

Figure 10. Dimensions of a Surface

The total number of points read for a surface is thus the product of the

two dimensions indicated by the two entries of POINTS. A positive inte-

ger for either entry of POINTS is taken directly as the number of

points. The indirect addressing mode discussed above can, however, be

used for either or both entries of POINTS, i.e., a negative integer in-

dicates a segment number to which a number of points has previously been

attached by an ITEM1eSETNUi statement. This segment number does not

have to be the same as that given here for COEOUT.

The Cartesian coordinates are given as triads of real numbers for

each point in succession. (It is also possible to give only a pair of

numbers x,y for each point, in which case z will be defaulted to 0.)

29

These coordinate values do not have to be arranged in columns as shown,

but are given simply as a series of numbers separated by commas in any

form.

It is also possible to read in the coordinate values from an external

file by including FILE=filenumber, instead of VALUES, on the operation

statement given above. In this case the form of the file can be either

all three coordinates of a point on a single line (the default), or one

coordinate to a line (indicated by including TRIAD="NO" on the opera-

tiorn statement). The format can be list-directed (indicated by includ-

ing FORM="LIST' on the operation statement), formatted in E20.8 format

(indicated by including FORM="E"), or may be unformatted (the default).

Point Distributions

After a curve has been read in as described above (or generated in

any manner by other operations described later), any number of points

can be distributed on the curve by a cubic spline with specified spacing

on one or both ends by the operation statement

$INPUT ITEM = "CURDIST", POINTS = number of points,

SPACE = first end spacing, second end spacing,

COREOUT = segment number $

if the curve was not input by the immediately preceding operation state-

ment, then it must be gotten from storage by including COREIN. The num-

ber of points to be placed on the curve can be given directly (positive

integer for POINTS) or indirectly (negative integer for POINTS), as has

been discussed above. (This number of points has no relation to the

number of points used previously to define the curve.)

The spacings can be given directly (positive real value) or indi-

rectly (negative integer). The operation statement given here assumes

that the spacings are relative spacings, i.e., fractions (0-1) of the

total arc length on the curve. Absolute spacings can also be used by

including RELATIV, also with two entries corresponding to those of

SPACE. Here "NO" for an entry of RELATIV indicates that the correspond-

30

ing spacing given is absolute, while "YES" (the default) indicates rela-

tive spacing. The absolute spacing can also be specified to be the same

as that on an end of a previously generated curve by giving a positive

integer as an entry of SPACE, the integer being the segment number (set

by COREOUT when the other curve was generated) of the other curve. (Al-

though absolute spacings are involved in this case, RELATIV is not to be

included.) In this case END, again with two entries, must also be in-

cluded, with "FIRST" or "LAST" as an entry of END indicating that the

corresponding spacing is to match that at the first or last end of the

other curve. The default for END is END="LAST", "FIRST", corresponding

to the common case illustrated below.

CURRENT

CURVE

Figure 11. Specification of End Spacing

The curve from which the spacing is taken does not, however, have to

be physically adjacent to one being treated. Finally, if only a single

entry is given for SPACE, the spacing is set at only the first end of

the curve. The omission of SPACE will produce an equally-spaced point

distribution. (There are also some other options for which Volume II

should be consulted directly.)

The resulting segment can be assigned a segment number and stored by

including COREOUT as indicated, but this is not required.

31

Straight Line

A straight line between two points In space can be constructed by the

operation statement

$INPUT ITEM - "LINE", POINTS = number of points,

Ri = first point, R2 = last point,

SPACE = first end spacing, last end spacing,

COREOUT = segment number $

Here POINTS and SPACE can be given directly or indirectly as has been

discussed above for ITEM="CURDIST". Either or both of the end points,

R1 and R2, can be specified directly by giving the three Cartesian coor-

dinates as three real numbers,

RI = x,y,z and/or R2 = x,y,z

or can be specified indirectly by giving the point number as a single

positive integer, as discussed above. The (optional) inclusion of CORE-

OUT assigns a segment number to the line.

Cubic Curve

A cubic space curve between two points in space can be generated by

the operation statement

$INPUT ITEM = "SCURVE", POINTS - number of points,

RI = first point, R2 = last point,

T1 = first end slope, T2 = last end slope,

SPACE = first end spacing, last end spacing,

COREOUT = segment number $

32

Here all quantities serve as for ITEM-"LINE", with the addition of the

slope vectors, Ti and T2, each of which is given as three real numbers

for the three direction cosines of the slope vector (i.e., the com-

ponents of the unit slope vector). T2

RI

Figure 12. Construction of a Space Curve

Entries for TI and T2 that are greater than unity are taken as actual

angles (in degrees), of which the cosine is taken by the code. The fol-

lowing are thus equivalent:

Ti = 0.707, 0.707, 0.707 and Ti = 45,45,45

Circular Arc

A generic circular arc in the x-y plane can be generated by the op-

eration statement

$INPUT ITEM = "CONICUR", POINTS = number of points,

RADIUS = radius, ANGLES = first point, last point,

SPACE = first end spacing, last end spacing,

COREOUT = segment number $.

Here POINTS and SPACE can be set directly or indirectly as discussed

above. The spacings here must be relative, so setting spacings from an

existing curve, as for "CURDIST", "LINE", and "SCURVE" is not possible

with "CONICUR". Such a setting can be accomplished, however, by follow-

ing the "CONICUR" operation with the "CURDIST" operation discussed

above.

The circular arc extends from the first angle to the last angle, each

of which is given in degrees measured counter-clockwise from the posi-

tive x-axis.

33

,' '" "L (12)

,, ANGLE (1); x

Figure 13. Angle and Direction Definitions

RADIUS and the two entries of ANGLES are real numbers. Assigning a seg-

ment number by including COREOUT is, as always, optional. There are

other possibilities with the operation "CONICUR", including elliptical,

parabolic, and hyperbolic arcs, for which Volume II should be consulted.

ted.

Composite Curves

It is possible to concatenate curves by the sequence of operation

statements

$INPUT ITEM - "CURRENT", COREIN = first segment $

$INPUT ITEM - "INSERT", COREIN = next segment $

$INPUT ITEM = "INSERT", COREIN = last segment,

COREOUT = segment number $

Here the first end of the curve segment indicated on the first "INSERT"

statement is attached to the last end of the curve segment indicated on

the "CURRENT" statement, the attachment points being overwritten. Each

succeeding curve segment is attached to the latest combination in like

manner:

34

SNX - LAST
- EGME NT SEGMENT

FIRST
SEGMENT

Figure 14. Space Curve Using INSERT

A segment number can be assigned to the combination by the (optional)

inclusion of COREOUT. The concatenation is simply additions to an ar-

ray, and the code does not establish, or check for, any continuity not

inherent in the combination. There are other possibilities with opera-

tion "INSERT", and Volume II should be consulted.

Insertion

A segment can be inserted into another segment by the operation

statements

$ITEM = "CURRENT", COREIN = receiving segment $

$ITEM = "INSERT", COREIN = inserted segment,

START = starting point, COREOUT = resulting segment $

Here the segment indicated by COREIN on the "INSERT" statement is in-

serted (overwritten) into the segment indicated on the "CURRENT" state-

ment, beginning at the point where indices are specified by START (Indi-

rect addressing can be used for START). The result may be given a

segment number by COREOUT as usual. This operation can be used fo -

curves or surfaces, and can also be used to concatenate surfaces.

35

Figure 15. Insertion of a Segment

Extraction

A segment can be extracted from an existing segment by the operation

statement

$INPUT ITEM = "EXTRACT", COREIN = existing segment,

START = starting point, POINTS dimensions of extraction,

COREOUT - segment number $.

The existing segment is obtained via COREIN, and a section whose size is

defined by the two entries of POINTS is extracted starting at the point

defined by the two entries of START:

POINTS(1), POINTS(2)

Figure 16. Extraction of a Portion of a Surface

36

indirect addressing can be used for both POINTS and START. Again the

assignment of a segment number to the extracted section via the inclu-

sion of COREOUT is optional.

Transformations

Curve and surface segments can be transformed by the operation state-

ment

E$INPUT ITEM = "TRANS", COREIN = original segment number,

COSINES = transformation matrix,

COREOUT = transformed segment number $

The transformation matrix, given as nine entries of COSINES, is composed

of the direction cosines of the old axes in the new system. The first

three entries are the dot products of the old i vector with the new

iaA vectors; etc.:

z z

i,j,k: old system

i,j,k: new system

4 z

y

Figure 17. Coordinate Unit Vectors

37

1 2 3

4 5 6

COSINES *i

7 8 9

k *i k k k

As always, actual angles (in degrees) can be given in place of cosines

if desired.

If translation as well as rotation is involved, the origin of the old

system should be placed at a location xo,yo,Z0 in the new system before

rotation by including

ORIGIN - x0 ,yo,z0.

The segment number of the transformed segment, assigned by COREOUT,

can be the same as, or different from, that of the original segment.

Any number of segments can be treated by one such transformation opera-

tion by giving more than one segment number for COREIN and COREOUT. If

COREOUT="SAME", the transformed segments will replace the original seg-

ments. In this operation on multiple segments, a negative entry in CORE-

IN or COREOUT implies all segment numbers from the preceding number to

the magnitude of the negative number. Thus the following are equiva-

lent:

COREIN - 1,2,3,4 and COREIN = 1, -4

Scaling

One or more segments can be scaled by the operation statement

$INPUT ITEM = "SCALE", COREIN = original segment number,

SCALE - three scale factors,

38

COREOUT - scaled segment number $

Here the three scale factors, one for each coordinate, given for SCALE

range on -1 to +1. Negative values give mirror-image reflections. Sev-

eral segments can be treated at once, as with the operation "TRANS".

(SCALE can be included on "TRANS", as well, with the scaling being done

first.)

Surface by Rotating Curves

An axis system containing a curve segment can be rotated about an

axis through the origin of the system to sweep out a surface, e.g. a

body of revolution, by the following sequence of the operation state-

ments:

$INPUT ITEM = "BOUNCUR", COREIN = segment number $

$INPUT ITEM - "BOUNCUR", COREIN = segment number $ (optional)

$INPUT ITEM - "ROTATE", ANGPTS - number of angles,

ANGLES - first angle, last angle,

AXCOS = three direction cosines of rotation axis,

COREOUT = segment number $

If the second "BOUNCUR" statement is omitted, the curve segment indi-

cated by the first "BOUNCUR" statement is rotated to each of ANGPTS an-

gular positions from the first entry of ANGLES to the second.

39

AXIS
ANGLE (I) /

Figure 18. Surface Generation

Note that the first (faster running) direction is along the curve, while

the second is in the rotation direction. Here ANGPTS can be set by in-

direct addressing in the manner of POINTS. These angular positions will

be distributed linearly between tte first and last angles with the op-

eration statement as given. The relative angular spacings at each end

can be set by including SPACE (with direct setting or indirect address-

ing). Actual angles can be given in place of the direction COSINES if

desired. The rotation is clockwise looking down the rotation axis

(right-hand rule). With the second operation "BOUNCUR"t included, an in-

terpolation is done between the two bounding curves before the rotation.

This interpolation follows the same relative distribution used for the

angular positions. The two curves must be placed in the same location

in space with a "TRANS" operation before being designated as bounding

curves.
. - -. - - - - BOUNCuR

I NTI'O~IATEI CURVF

Figure 19. Rotation Using Bounding Curves

40

It is possible to create a body of revolution with an angular variation

of radius by fir:st creating and storing a function of radius in ter'ms or

angle, r(e). On the "ROTATE" operation, DISTYP="CURVE" is included in

this case instead of SPACE, and the radial distribution curve is sup-

plied via COREIN. The two bounding curves in this case have the same

shape but different sizes. Volume II can be consulted for other possi-

bilities.

Surface by Stacking Curves

Curve segments can be stacked along a space-curve axis to form a sur-

face segment, e.g. a curved duct, by the following series of operation

statements

$INPUT ITEM = "BOUNCUR", COREIN = segment number $

$INPUT ITEM = "BOUNCUR", COREIN = segment number $ (optional)

$INPUT ITEM = "AXIS", COREIN = segment number $

$INPUT ITEM = "STACK", AXPTS = number of axial positions,

AXCOS = direction cosines of axis tangent in curve system,

NORCOS = direction cosines of axis principal normal in curve
system,

COREOUT = segment number $

Here one or two bounding curve segments are designated as for the opera-

tion "ROTATE". The operation "AXIS" designates a curve segment as the

axis of the stacK. If only a single bounding curve is designated, then

the axes system containing this curve is placed with its origin at a

point on the axis of the stack, with the axis tangent at that point

aligned with the AXCOS vector in the curve axes system, and with the

principal normal to the axis aligned with the NORCOS vector.

41

BOUNCUR

NO

Figure 20. Surface Generation by Stacking

The positions on the axis are simply the points on the axis curve. Note

that the first (faster running.) direction is along the curves, while the

second is along the axis. If two bounding curves are given, both must

be on the same axes system. Interpolation is done between these two

curves, and then the interpolated curve is placed in position on the

axis. The interpolation will be linear with axial arc length unless

SPACE is included to set a relative distribution. Again indirect

addressing can be used for SPACE.

With two bounding curves it is possible to construct such things as a

duct or body that transitions, for instance, from a circular cross-sec-

tion to an elliptical cross-section:

- - ---- -

Figure 21. Surface Generation Using Circle and Ellipse

It is also possible to create a duct or body with a constant cross-

sectional shape but having a specified variation of radius with axial

arc length:

42

Figure 22. Example of a Stack to Generate a Surface

This is accomplished by creating and storing a curve defining the radius

as a function of axial arc length. On the "STACK" operation, DISTYP =

"CURVE" is included instead of SPACE, and the radial distribution curve

is supplied via COREIN. The two bounding curves in this case have the

same shape but different sizes. Volume II can be consulted for other

possibilities.

Surface by Blending Curves

A surface segment can be created by interpolation between two curve

segments by the following series of operation statements:

$INPUT ITEM = "BOUNCUR", COREIN = segment number $

$INPUT ITEM = "BOUNCUR", COREIN - segment number $

$INPUT ITEM = "BLEND", CURVES = number of curves, SPACCUR=relative

spacing,

COREOUT = segment number $

Here both bounding curves are required. The number of interpolated

curves is given by CURVES (with indirect addressing possible as with

POINTS), including the two bounding curves.

43

#I
#1 BOUNCUR

#2

OUNcuR

Figure 23. Surface Generation Using BLEND

Note that the first (faster running) direction is along the curves,

while the second is in the interpolation direction. The interpolation

is linear unless SPACCUR is included to set a relative distribution.

Again indirect addressing can be used for SPACE. (There are other pos-

sibilities, and Volume II should be consulted.)

Surface by Transfinite Interpolation

A surface segment bounded by four curve segments can be generated by

transfinite interpolation via the following set of operation statements:

$INPUT ITEM = "EDGECUR", EDGE = "LOWERI",
COREIN = curve segment number $

$INPUT ITEM = "EDGECUR", EDGE = "UPPERI",
COREIN = curve segment number $

$INPUT ITEM = "EDGECUR", EDGE - "LOWER2",
COREIN = curve segment number $

$INPUT ITEM = "EDGECUR", EDGE - "UPPER2",
COREIN = curve segment number $

$INPUT ITEM = "TRANSUR", COREOUT = surface segment number $

44

i~re the four- curve segmnents forming the edges of the surface must have

already been generated and stored, and opposite edges must have the same

number of points. These four curves must meet at four corners, of

course. The edges are as follows:

"UPPER2"

"LOWER I"

#2

"LOWER2"

Figure 24. Surface Generation by Transfinite Interpolation

where, as usual, the #1 direction is the faster running direction.

Intersection of Two Surfaces

The intersection curve between two surfaces can be generated by the

following operation statements after the two surfaces have been gener-

ated:

$INPUT ITEM = "CURRENT", COREIN - male surface segment $

$INPUT ITEM = "INTSEC", COREIN - female surface segment,

COREOUT = intersection curve $

The intersection curve is composed of the intersection points of the #2

direction lines on the male surface with the female surface:

45

Figure 25. INTSEC Operation

If the male surface was generated with the directions opposite from that

needed here, the #1 direction can be made the #2 direction by the opera-

tion statement

$INPUT ITEM - "SWITCH" $

inserted immediately before the "INTSEC" statement.

Switching Directions

The "SWITCH" operation can be used in general, not only to switch the

roles of the directions, but also to reverse the point progression in

either or both directions by the inclusion of REORDER with up to three

entries. The three possible entries are "SWITCH" which switches the two

directions (the default), and "REVERSEJ" and "REVERSE2" which reverse

the point progression in the two directions. The order of the entries

is irrelevant, and switching is always done first if called for. A seg-

ment can be supplied via COREIN, and can be stored with a different seg-

ment number via COREOUT if desired.

c. Construction on Curved Surfaces

Some of the operations in the boundary code can be applied on curved

surfaces in terms of surface parametric coordinates, e.g. longitude and

latitude on the surface of the Earth. In this mode the operation

46

"LINE", for instance, will construct a curved line lying on the surface

between two points on the surface. This mode is invoked by including

SURFACE="CURVED" on the "LINE" operation statement. The surface must,

of course, have been generated before the "LINE" operation is used, and

also the operation statement

$INPUT ITEM = "SPLINE", COREIN = surface segment $

must be given before the "LINE" operation in order to spline the sur-

face. The cubic curve operation "SCURVE" can also operate in this mode.

A grid lying on a surface can be created by interpolation between two

curves on the surface via the "BLEND" operation, or by transfinite in-

terpolation from four edges via the "TRANSUR" operation. In each case,

the bounding curves must have been generated to lie on the surface, e.g.

by "SCURVE" or "LINE", as discussed above, or as the intersection of the

surface with another surface. The "BLEND" or "TRANSUR" operation state-

ments must include SURFACE="CURVED", and the surface must have been

splined via the "SPLINE" operation statement discussed above before

prior to all of these operations.

For example, such a grid can be constructed on the male surface after

an intersection using the intersection curve as a grid line as follows.

With the two intersecting surfaces created as usual, and the intersec-

tion curve generated by the operation statements

$INPUT ITEM - "CURRENT", COREIN = male surface $

$INPUT ITEM = "INTSEC", COREIN = female surface,

COREOUT = intersection curve $

the male surface is splined by

$INPUT ITEM = "SPLINE", COREIN = male surface $

and then the intersection curve is made by a bounding curve for the

"BLEND" operation by

47

$INPUT ITEM = "BOUNCUR",

COREIN = intersection curve $

female surface \

INTERSECTION

S CUJRVE

0 FIRST BOUNCUR

SECOND BOUNCUR

Figure 26. Intersection Curve to Generate a Surface

Next the curve forming the edge of the male surface opposite the inter-

section is extracted by the operation

$INPUT ITEM = "EXTRACT", COREIN = male surface,

START = first point on edge, POINTS - number of points on edge $

Here two entries are given for START, i.e., the indices of the first

point on the edge opposite the intersection. This extracted curve is

then made for the second bounding curve by

$INPUT ITEM = "BOUNCUR" $

(No COREIN is necessary here since the curve intended is the result of

the immediately preceding operation.) The operation

$INPUT ITEM = "BLEND", SURFACE - "CURVED",

CURVES = number of curves, COREOUT - grid segment $

then generates the desired grid on the male surface between the inter-

section and edge curve.

48

4\

Figure 27. Example of Use of Intersection Curve

A grid on this male surface could also have been generated by trans-

finite interpolation on the surface via the "TRANSUR" operation, with

the four edge curves being the intersection and three edge curves ex-

tracted from the male surface.

This capability for the generation of a grid on a curved surface al-

lows the boundary code to function as an algebraic surface grid genera-

tion system, but the primary purpose of surface grids here is for input

as boundary segments to the grid code.

d. Output

After all of the surface segments to be input to the grid code have

been generated, a file of these segments can be created by the operation

$INPUT ITEM - "COMBINE", CONTENT - "YES",

COREIN = surface segments, FILEOUT w file number $

Here the surface segment numbers are given for COREIN, in any order and

separated by commas. Sequences of consecutive numbers can be given as

the first number in the sequence followed by a comma and then by the

negative of the last number in the sequence. The file indicated then

can be preserved for input to the grid code.

49

A similar usage of the "COMBINE" operation, but with HEAD="YES",

TRIAD="YES", FORM="E" included instead of CONTENT, will create a for-

matted file of the segments indicated that can be read by a plot code.

The form of this file is

1 M N

x y z

x y z

2 M N

x y z

x y z

etc.

where the numerals appear as given, and MxN is the segment size. The

coordinates appear in 3E20.8 format.

e. Other Operations

There are a number of other operations, and variations of the opera-

tions discussed here, in the boundary code, and Volume II should be con-

sulted. The present discussion is not meant to be a full reference, but

is intended as a general introduction to the use of the code, particu-

larly in concert with the grid code.

50

3. GRID CODE

The grid code receives the Cartesian coordinates of points on bound-

ary segments and generates the grid within the physical region defined

by these boundaries. These boundary points can have been generated by

the boundary code (or another code) to be read from a file by the grid

code, or can be input directly in the grid code runstream.

The grid is constructed of six-sided (four in 2D) contiguous blocks

which fit together to fill the entire physical region. The number,

size, and arrangement of these blocks is arbitrary and is set up in the

grid code runstream. In general, the grid is generated to be completely

continuous across the block interfaces. These blocks have curved sides

in the physical region, of course, but correspond to rectangular blocks

in the computational region. An extra layer of points surrounding each

block is used by the code to establish an image-object correspondence

across the block interfaces to provide this continuity. Each block may

be of a different size, and the only requirement is that they fit to-

gether to fill the physical region.

Each block has its own set of curvilinear coordinates ,I 2

which assume integral values at the grid points, varying from unity to

the number of points in each direction in the block:

1 2 3

1,1,1

Figure 28. Curvilinear Coordinates

51

(These curvilinear coordinates are thus synonymous with the I,J,K indi-

ces of DO loops over the block.) Although the grid lines are continuous

across the block interfaces in the physical field, the species (and/or

direction) of the curvilinear coordinates can change across the inter-

face:

BLOCK I BLOCK 2

Figure 29. Curvilinear Coordinates Across Block Boundaries

Although it is not required, the boundary segment numbers assigned in

the boundary code can be transferred to the grid code via the file that

contains the Cartesian coordinates of the boundary points. This, and

the (optional) use of the point numbers assigned in the boundary code

runstream, allows changes in the number of points on the various seg-

ments to be accomplished through very localized changes in the run-

streams (with no changes required in the grid code runstream in most

cases).

The first step in this use of numbered points and segments (indirect

addressing) is the making of good sketches of the boundary segments and

the block structure. All points defining the edges of the boundary seg-

ments and the corners of the blocks, together with other important

points, should be numbered on these sketches. Similarly, the boundary

segments that are to be transferred from the boundary code to the grid

code should be numbered. As noted in the discussion of the boundary

code, it is helpful to adopt some grouping of these numbers to identify

certain naturally related points and segments. Since many points and

segments will be shared by different blocks, point and segment numbers

52

should be unique to physical position, with the same numbers being used

for shared points and segments in different blocks. Finally, the direc-

tions of the curvilinear coordinates in each block should be indicated

on the sketches.

The grid code input runstream is similar in form to that of the boun-

dary code, directing the code through a sequence of operations through

successive NAMELIST input statements of the form

$INPUT ITEM - " ", --- $

with the particular operation being identified by the name within the

quotes, and the quantities relevant to that operation included on the

statement.

a. Reading Boundary Segments

There are two basic modes for transferring the boundary segments gen-

erated in the boundary code to the grid code. These segments can either

be read from a file one at a time, or can all be read from the file at

once. The former mode does not involve coupling of the boundary and

grid codes through the use of segment numbers, and in that case CON-

TENT="YES" should not be included on the ITEM="COMBINE" operation state-
ment in the boundary code runstream since no segment numbers are in-

volved. This is also the mode that is used when the boundary segments

are generated by some means other than the boundary code. The other

mode, reading all the segments at one time from the file, is used when

the boundary and grid codes are coupled through the use of segment num-

bers, with the file having been generated by the "COMBINE" statement in

the boundary code with CONTENT-"YES" included. The segment numbers are

the numbers assigned by COREOUT in the boundary code.

Boundary surface segments are read in as rectangular arrays of

points, with three Cartesian coordinates per point. The segment is read

onto a section defined by two points in the block, which are identified

by START and END on the operation statement that does the reading. This

53

section in the block has the points identified by START and END at op-

posing corners and must be of the same size as the rectangular array be-

ing read in.

END

START

Figure 30. Segment Read

START and END each can be given either as the three indices of tne point

in the block, or as the point number if the segment number coupling (in-

direct addressing) is used. One index for START must, of course, be the

same as the corresponding index of END in the former case since the seg-

ment forms a surface. (Two corresponding indices will be the same when

a curve is read.) The reading is done from START to END, and the direc-

tion (1,2, or 3) in the block that is to run fastest (i.e., the inner

loop) in the reading is identified by ORDER. It is not necessary to

include ORDER if the fastest and slowest directions are in the order

1,2,3, or if the segment number coupling is used, or if the segment is a

curve instead of a surface.

No Coupling with Boundary Code

Reading one boundary segment at a time is done by the operation

statement

$INPUT ITEM = "FILE", FILE = file number,

START = first point, END = last point $

54

Here START and END each are three integers (two in 2D) supplying the

indices, i.e., the curvilinear coordinate values, of the two opposite

corners of the segment being read, as has been discussed above. One

such operation statement is given for each boundary segment read in this

manner. If more than one of these segments is on a single file, it is

obviously necessary that the segments be read in the order in which they

appear on the file. The file here simply contains the three Cartesian

coordinates (two in 2D) lor each point on a boundary segment. Several

formats are available, and Voliue III should be consulted. The default

is the three coordinates of a point together as a triad on a line, one

line for each point, unformatted. (A similar operation statement, but

with "FILE" replaced by "LIST" and FILE replaced by VALUES, reads seg-

ments directly from the NAMELIST. Here the three (two in 2D) Cartesian

coordinates of each point on the segment are given in succession as the

entries of VALUES, these real numbers being separated by commas. Spaces

can be included and any pattern is allowed. Again, one such operation

statement is given for each segment read in this manner.)

Coupling with Boundary Code

When the boundary and grid codes are coupled through the transfer of

segment numbers on the file as well, all of the boundary segments on the

file are read at one time. (Here the file must have been generated by

the boundary code via the ITEM."COMBINE" operation statement with CON-

TENT="YES" included, as discussed above.) In general this reading is

done by the operation statement

$INPUT ITEM - "FILE", FILE = file number,

ALL = "YES" $

which should be preceded in the input runstream only by the ITEM

"INITIAL" operation statement (discussed later).

55

b. Block Definition

Each block is introduced in succession in the runstream by the state-

ment

$INPUT ITEM = "BLOCK" $

The code numbers the blocks as they are introduced. If the segment num-

ber coupling with the boundary code is not used, this statement should

in cl ude

SIZE = block dimensions

giving the number of points in the three (two in 2D) directions in the

block as three (two in 2D) integers.

Point Locations - Coupling with Boundary Code

If segment number coupling is used, the location of each numbered

point in the block is set next by a series of operation statements with

ITEM="POINT". The first of these must be

$INPUT ITEM = "POINT", POINT = point number, LOCAT = point location $

The point location here is three (two in 2D) integers defining the indi-

ces (curvilinear coordinates) of the point in the block. This point is

typically the one at (1,1,1), but can be anywhere in the block. The

other numbered points are then set in relation to previously set points

by statements of the form

$INPUT ITEM = "POINT", POINT - point number,

OPOINT = other point number, SEGMENT = segment number,

DIRECT = direction on grid, NDEX = direction on segment $

56

Here the point being set and the "other point" are both end points of an

edge of the segment named. DIRECT is ±1,±2, or ±3, indicating the cur-

vilinear direction in the block from this other point to the point being

se"C, and NDEX is 1 or 2 indicating whether the segment edge was the

faster (#1) or slower (#2) direction on the segment when the segment. was

generated by the surface code.

#1 POINT DIRECT=+2
N DEX = 2

#2

OTHER
POINT

2A

Figure 31. Point Locations

If the segment is a curve, instead of a surface, NDEX is omitted. All

the numbered points can be set by a succession of such statements in a

progression through the block. This progression is not unique, of

course, but the indices assigned are unique.

It is possible to set the indices of a group of points from another

corresponding group, e.g. on different meridional planes of a body of

revolution. The operation statement

$INPUT ITEM = "POINT", POINT - increment, SEGMENT - segment number,

DIRECT = direction in block, NDEX - direction on segment $

sets a new group of points from all of the currently set points in the

block. The numbers of the points in the new group are formed by aiding

the value given for POINT to the current point numbers.

Once these indices have been assigned in this manner, the points can

be referenced by giving the point number as a single positive integer,

in place of the three indices of the point, for START,END,ISTART or IEND

57

on all statements requiring the point. Values of individual indices

from a numbered point can be used to reference other unnumbered points

by giving negative integers for one or more entries of START,END,ISTART

or IEND. In this case the value of the index will be that of the same

index for the numbered point indicated by the magnitude of the negative

value. Thus, the circled point in the illustration below

Figure 32. Indirect Point Referencing

can be referenced by START=-5,-1 (or equivalently by -8,-2). Positive

and negative entries for these quantities may be mixed, with the former

giving actual values of the indices.

The point assignment statements will appear for each block, following

the ITEM--"BLOCK" statement for each, so points common to more than one

block will have '-he same number in each block, but will be assigned ap-

propriate differetit indices in each block.

Placing of Segments - Coupling with Boundary Code

Next in this segment number coupling mode comes a series of state-

ment,3 that locate the boundary segments in the block:

$INPUT ITEM = "SEGMENT", SEGMENT = segment number,

START = first point number, END = last point number $

Here START and END define the first and last points on the segment as it

war; generated by the surface code:

58

Figure 33. Segment Specification

It is not necessary to give the "SEGMENT" statements in the order of the

segments on the file, and the same segment can be placed at different

positions in the block, e.g., for the two sides of a cut.

Block Size - Coupling with Boundary Code

Finally the block size is set by the statement

$INPUT ITEM = "SIZE", SIZE = point number $

where the point number given is that of the point opposite the point

(1,1,1).

No Coupling

If the .3egment number coupling mode is not used, the block size is

set on the "BLOCK" statement as has been discussed above, and the "MEG-

MENT" statements are replaced by the "FILE" and/or "LIST" statements

also discussed above. It is possible to combine the two modes, placing

some segments by "SEGMENT" statements and reading others individually

from files via "FILE" statements. The only requirement is that all of

the segments placed by "SEGMENT" statements, or used on "POINT" state-

ments, be included on the file generated with CONTENT-"YES" by the sur-

59

face code and read with ALL="YES" by the grid code, as described above.

Points can be referenced throughout the runstream either by the single

point number or by the three (two in 2D) indices of the point.

Boundary Segments and Interfaces

Boundary segments must be read in for all parts of the physical

boundaries of the region, of course. In addition, all edges of each

block must be read in if not included as part of another segment. The

interfaces between blocks can also be read in, if desired, but this is

not necessary since the grid code can interpolate (transfinite) from the

edges for points on the interfaces. It does save time in repeated runs

of the grid code, however, to read in the interfaces. It may also be

desirable to read in the interfaces for purposes of controlling the grid

line spacing and orientation.

c. Boundary Point Types

Fixed Points

All points that are to remain fixed as the grid is generated must be

so designated either as a segment is placed (via the "SEGMENT", "FILE",

or "LIST" operations), by including CLASS="FIX" on the operation state-

ment, or must be explicitly designated by separate operation statements

of the form

$INPUT ITEM = "FIX", START = first point, END = last point $

with START and END identifying a section of points in the block as

usual. Once a point has been designated "FIX", that designation can be

changed only by an operation statement similar to that above but with

"UNFIX" in place of "FIX". On these statements, and on all others to be

discussed, START and END can each be given as the three (two in 2D) in-

dices of the point or as the point number.

60

Boundary Orthogonality

The grid can be made orthogonal on sections of surfaces (curves in

2D) in a block by the operation statement

$INPUT ITEM = "ORTHOG",

START = first point, END - last point $

This will cause the grid to be orthogonal on the section identified by

START and END without moving the points on the section. If this section

is in the interior of the block, the orthogonality will occur only on

the upper side. Orthogonality on the lower side is set by a similar

statement with DIRECT="LOWER" included.

Symmetry Boundaries

Symmetry conditions can be imposed on a section of a plane boundary

by an operation statement of the above form, but with "REFLECT" in place

of "ORTHOG" .

Sub-Blocks

Tne grid code generates an algebraic grid by transfinite interpolati-

on from all the faces of a block. Internal faces within the block can

be imposed, if desired, for this interpolation by creating sub-blocks

within which the interpolation is done separately. Such a sub-block

structure is credted by an operation of the form

$INPUT ITEM - "SUB",

START - first point, END = last point $

where START and END identify points at two opposing corners of the sub-

block. It is necessary that enough of these statements be given to com-

pletely fill the block with sub-blocks. Points on the internal faces

can either be read in, if desired, or will be interpolated by the code.

61

The sub-block structure is involved only in the generation of the alge-

braic grid and in the evaluation of the control functions for the ellip-

tic grid generation system, and does not affect the block structure for

storage. The sub-block interfaces do not have to be designated as cuts.

Interfaces

After each block has been set up, interfaces between blocks must be

designated as cuts by operation statements of the form

$INPUT ITEM = "CUT", BLOCK = object block,

START first object point, END = last object point,

IBLOCK = image block,

ISTART = first image point, IEND = last image point $

Here START and END identify opposing corner points of the cut section on

a face of the object block, while ISTART and IEND identify the corners

of the corresponding interface on the image block. Each of these can be

given as three (two in 2D) indices of the point or as the point number.

The point progression from START to END must correspond to that from

I:TART to IEND. Also if the index (curvilinear coordinate) species do

not correspond between the two blocks at the interface, ORDER must be

included. The three (two in 2D) entries of ORDER are a permutation (not

necessarily cyclic) of 1,2,3, with the first entry indicating which di-

rection on the object block corresponds to the FI direction on the image

block, etc. The elliptic grid will be continuous across cuts. A cut

section does not have to cover an entire block face.

Boundary PoiltL.

Points previously designated "FIX" are not affected by "ORTHOG" ,

"REFLECT", or "CUT" designations and can be included in such sections

with no effect. Therefore the "FIX" designation must not be attached to

points intended for orthogonality or symmetry.

62

Other Parameters

In addition to the operations described above, there are a few other

Items to be set. The first operation statement to be given is

$INPUT ITEM - "INITIAL", --- $

If an algebraic grid only is intended, ITMAX-0 is included on this

statement, while for an elliptic grid the maximum number of iterations

is given for ITMAX. In the latter case, an iteration convergence toler-

ance can also be set by including a real number (less than unity) as

TOL. If TOL is omitted, the total number of iterations set by ITMAX will

be performed. The value given for TOL is a relative tolerance, defined

as a fraction of the length scale (cube root of the total volume of the

physical region), at which the iteration stops.

0 ut put

Finally, the grid can be stored on file by the statement

$INPUT ITEM = "STORE", FILE = file number $

There are several other features and options for which Volume III should

be consulted.

Sections of the grid can be printed by operation statements of the

form

$OUTPUT ITEM - "PRINT", BLOCK - block number, START - first point,

END = last point $

where START and END identify the section in the same manner described

above for the other statements. Any number of such statements can be

given, in an order. Similar statements, but with "PLOT" in place of

"PRINT", write the section on file 8 for later input to a plot code. The

63

form of this file is the same as that described above for plotting from

the boundary code, with each section numbered consecutively regardless

of the block from which it came.

Example - No Coupling with Boundary Code

If segment number coupling with the boundary code is not used, or if

the boundary segments are input from another source or directly in the

grid code runstream, the typical form of the grid code runstream is as

follows:

$INPUT ITEM = "INITIAL", --- $

$INPUT ITEM = "BLOCK", SIZE . _ $

$INPUT ITEM = "FILE", FILE = START ,

* END= , . ._ --- $

$INPUT ITEM - "SUB", START = END = ._ $

$INPUT ITEM = "FIX", START = END = $

$INPUT ITEM = "ORTHOG" , START = . , , END =

CONUPI = $

$INPUT ITEM = "BLOCK", SIZE . , , $

$INPUT ITEM = "CUT", BLOCK - _ START = . END =

IBLOCK = _, ISTART , . . IEND , . . $

$INPUT ITEM = "STORE", FILE $

$INPUT ITEM = "END" $

64

$OUTPUT ITEM - "PRINT", START - , , END $-, , $
4Q

$OUTPUT ITEM = "PLOT", START = ,, , END $, ,, $

$OUTPUT ITEM = "END" $

Not all of these statements will appear in each case, and there are

still other options discussed in Volume III.

Example - Coupling with Boundary Code

With segment number coupling with the boundary code, the typical grid

code runstream is of the form

$INPUT ITEM = "INITLAL", --- $

$INPUT ITEM = "FILE", FILE - , ALL - "YES" $

$INPUT ITEM = "BLOCK" $

$ INPUT ITEM = "POINT", POINT _, LOCAT $

$INPUT ITEM - "POINT", POINT = , OPOINT- , SEGMENT

DIRECT = -, NDEX $ $

$INPUT ITEM = "SIZE", SIZE $

$INPUT ITEM - "SEGMENT", SEGMENT _, START = , END - , --- $

$INPUT ITEM - "SUB", START - , END = $

$INPUT ITEM - "FIX", START - END - $

65

$INPUT ITEM = "ORTHOG", START , END _, CONUPI = $

$INPUT ITEM = "BLOCK" $

$INPUT ITEM = "CUT", BLOCK = START = END =

* IBLOCK = _, ISTART = , IEND = $

$INPUT ITEM = "STORE", FILE = , --- $

$INPUT ITEM = "END" $

$OUTPUT ITEM = "PRINT", START = , END = $

$OUTPUT ITEM = "PLOT", START END = $

$OUTPUT ITEM = "END" $

Again not all of these statements will appear in all cases, and there

are other options.

d. Grid on Curved Surface

The grid code also has a surface mode by which a 2D grid can be gen-

erated on a curved surface. In this mode the surface on which the grid

is to be generated is read in by the statement

$INPUT ITEM = "SURFACE", SIZE = surface dimensions,

FILE = file number $

The presence of this statement, which should be first given, activates

the surface mode. Two entries are given for SIZE to define the dimen-

sions of the surface. The file can have been generated by the boundary

66

code, or some other source. The format can be specified as for other

reading of files, but the points must be placed one to a line, with the

triad x,y,z on a single line (TRIAD="YES" in the boundary code.)

The grid is generated in terms of surface parametric coordinates, and

the input is that for normal 2D operation, including the block structure

and all the features discussed above. The values read in on the bound-

ary segments (curves here) simply are two parametric coordinates per

point, instead of three Cartesian coordinates. These parametric coordi-

nates are analogous to latitude and longitude on the surface of the

Earth, but here are the two indices on the surface:

#2

11 #1

Figure 34. Griding an Existing Surface

The surface is splined in terms of these parametric coordinates, which

vary from unity to the dimensions of the surface in each direction. The

boundary segments can be put in terms of these parametric coordinates in

the boundary code simply by giving the operation statement

$INPUT ITEM - "CORPAR", COREOUT = segment number $

immediately after such a curve segment has been generated on the surface

by an operation including SURFACE="CURVED", or as the inter3ection -

tween the surface and another, in the boundary code.

67

SECTION V

APPLICATIONS
NACA 0012 AIRFOIL (2-D)

This example will illustrate the procedure for building a two-
dimensional C-grid (221X20) about a symmetric airfoil (specifically, an

IJACA 0012 airfoil). Line-by-line descriptions of the inputs for the
boundary code and the inputs for the grid code will be presented as well as
simple illustrations of the effect of each line of input.

Figure 35 and 36 are illustrations of the physical space and the
computational space. The numbering corresponds to the up-front bookkeeping
in this version of the EAGLE code that allows for fast and efficient
modifications to the body and grid. Refer to this numbering while going
through the following boundary code inputs.

SET POINT CARTESIAN COORDINATES (circled numbers)

1. $INPUT ITEM='POINT', POINT=I, R=30.,O. $
2. $INPUT ITEM='POINT', POINT=6, R=30.,-30. $
3. $_NPUT ITEM='POINT', POINT=5, R=30.,30. $

[n Fi6ure 1(a) the x-y coordinate system is as shown. Point #2 will be set
by reading in airfoil data to be discussed later. Points #3 and #4 need
not be set.

SET NUMBER OF POINTS ON SEGMENTS (squared numbers [)

4. $INPUT ITEM='SETNUM', SEGMENT=9, POINTS=81 $

Number of points along SEGMENT #9 which is not shown. To be used later for

distribution of points along airfoil.

5. $INPUT ITEM='SETNUM', SEGMENT=1, ITERMS= -9,-9 $

Set number of points on the airfoil; total for top and bottom. ITERMS:
-9,-9 adds the number of points set for SEGMENT #9 together. That is,
81 + 81 = 161. (Because end point of one is first point of other, the math

is actually 81 + 81 = 162 - 1 = 161.)

6. $INPUT ITEM='SETNUM', SEGMENT:2, POINTS:31 $

Set number of points on wake line.

7. $INPUT ITEM='SETNUM', SEGMENT=3, POINTS=20 $
8. $TNPUT ITEM='SETNUM', SEGMENT=7, POINTS=1241 $
9. $TNPUT ITEM='SETNUM', SEGMENT=6, POINTS=41 $

Sets the number of points on the bottom rear outflow surface, front far
field surface, and bottom far-field surface, respectively.

10. $INPUT ITEM:'SETNUM', SEGMENT=5, ITERMS= -2,-7,-1 $

Establishes the number of points for the top half of the computational
space to match the sum of the points in the bottom half. 31 + 161 + 31

221 [HATH=((ADD-1)-1).

11. $INPUT ITEM='SETNUM', SEGMENT=8, ITERMS= -5,-6, MATH= 'DIF+1' $
12. $TNPUT ITEM='SETNUM', SEGMENT=8, ITERMS= -8,-7, MATH= 'DIF+1' $

68

AT
a5 I

F 1 ------------

figure 35. Physical Space (a) and Computational Space (b)

69

Set the number of points for SEGMENT #8, by first subtracting off SEGMENT
#6 and then subtracting off SEGMENT #7. That is, 221 - 41 = 180 + 1 = 181,
then 181 - 141 = 40 + 1 = 41. SEGMENT #8 should match SEGMENT #6 in
physical space. By setting up the inputs in this fashion, one only need

change SEGMENT #6 and SEGMENT #8 will be changed automatically.

SET SPACINGS (triangled numbers A)

13. $INPUT ITEM='SETVAL', NUMBER=1, VALUE=.001 $
14. $INPUT ITEM='SETVAL', NUMBER=2, VALUE=.01 $

15. $INPUT ITEM="SETVAL', NUMBER=3, VALUE=.0001 $
16. $INPUT ITEM='SETVAL', NUMBER=4, VALUE=.0015 $

These values can be relative or absolute - see section on distribution
parameters.

READ AIRFOIL

17. $INPUT ITEM='CURRENT', POINTS= 500 , VALUES=
18. O.OOOOOOOE+O0, 0.OOOOOOE+00, 0.0000000E=00,

517. 1.000000 , O.0000000E+00, O.0000000E=00 $

dere, x, y, and z values for the top half of the airfoil are read in.
Notice the start at the origin and end at x=1.O, y=O.0. All the Z-values
are 0.0 for this 2-D case. For this example, all 500 points were not
shown. The data was generated by writing a short program using the

equation for the line making up the top half of an NACA 0012 airfoil.

DISTRIBUTE POINTS ON THE AIRFOIL

518. $INPUT ITEM='CURDIST', POINTS=-9, SPACE=-4, -2, END= 'LAST', 'LAST',
COREOUT=9 $

Interpolates the 500 points to 81 points using the spacing at the nose,

SETVAL 4 and at the trailing edge, SETVAL 2. Save to COREOUT #9.

519. $INPUT ITEM='SWITCH', REORDER='REVERSE1' $

'SWITCH' is necessary to get points to run from right to left for building
the bottom half of the airfoil.

Y

X

Figure 36. 'SWITCH' for Bottom Half of Airfoil

70

520. $INPUT ITEM='SCALE', SCALE=1, -1, 1 $
521. $INPUT ITEM='INSERT', COREINz9, CCREOUT:1 $

'SCALE' rotates the line segment by making all the y-valUe3 negative.
'INSERT' merges the top and bottom halves of the airfoil and saves it to
COREOIJT #1.

x

- Y1

Figure 37. 'INSERV Merging Top and Bottom Half of Airfoil

BUILD FRONT OUTER BOUNDARY

522. $INPUT ITEM='CONiCUR', TYPE='CIRCLE', RADIUS= 30., ANGLE=27O,90,
POINTS=100, COREOUT:? $

Draws a half-circle of radius 30 from 270 degrees to 90 degrees.

Figure 38. Drawing the Half Circle for the Front Outer Boundary

71

523. $INPUT ITEM='CURDIST', COREIN=7, POINTS=-7, SPACE=-3, -3, COREOUT=7 $

Puts the number of points set for Segment #7 on this curve. Use relative
spacing SETVAL 3 on each end. COREOUT number is SEGMENT number.

A

A
F'igure 39. Detail of Spacing for Front Outer Boundary

PLACE POINTS ON SEGMENT #6

524. $INPUT ITEM='GETEND', COREIN:7, POINT:'FIRST', END:'FIRST' $
525. $INPUT ITEM:'LINE', POINTS..-6, R2=6, SPACE=7, END:'FIRST' $
526. $INPUT ITEM='SWITCH', REORDER='REVERSE1', COREOUT=6 $

'GETEND' takes the first point from SEGMENT #7 as RI for 'LINE'.

'LINE' uses the spacing at the first end (or beginning) of SEGMENT #7 as
the spacing at the first end (or beginning) of 'LINE' and uses the same
number of points as SEGMENT #6. 'LINE' starts at the first point on
SEGMENT #7, retrieved by GETEND, and ends at POINT #6.

'SWITCH' is necessary to get the points to run from right to left.

-igure 4C. 'SWITCH' for Points on Bottom Outer Boundary

PLACE POINTS ON SEGMENT #8

527. $INPUT ITEM:'GETEND', COREIN:7, POINT='LAST', END='FIRST' $
528. $INPUT ITEM:'LINE', POINTS=-8, R2=5, SPACEz7, END:'LAST', COREOUT:8 $

'GETEND' takes the last point from SETMENT #7 as RI for 'LINE'. 'LINE'

72

uses the spacing at the last end of SEGMENT #7 as the spacing at the first

end of 'LINE' and uses the number of points set for SEGMENT #8. Line starts

at the last point on SEGMENT #7, retrieved by GETEND, and ends at POINT #5.

Figure 41. Top Outer Boundary

COMBINE SEGMENTS #6, 7, AND 18 TO FORM #5 (computational)

529. $INPUT ITEM='CURRENT , COREIN=6$

530. $INPUT ITEM=INSERT', COREIN=7$

531. $INPUT ITEM='INSERT', COREIN=8, COREOUT=5 $

Figure 42. Combining Segments to Form Complete Outer Boundary

PLACE POINTS ON SEGMENT #2

532. $INPUT ITEM='GETEND', COREIN=1, POINT='FIRST', END:'FIRST' $

533. $INPUT ITEM='LINE', POINTS=-2, R2=1, SPACE=-2, RELATIV='NO' $

534. $INPUT ITEM='SWITCH', REORDER='REVERSE1', COREOUT:2 $

'GETEND' takes the point from the trailing edge of the airfoil as Ri for

'LINE'.

'LINE' uses the spacing from SETVAL 2 and th, number of points from

SETNUM #2. 'LINE' starts at the airfoil trailing edge and ends at POINt #1.

'SWITCH' gets the points to run from right to left.

Figure 43. 'SWITCH' to Get Points Oriented Correctly on the Wake Line

73

PLACE POINTS ON SEGMENTS #3 AND #4

535. $INPUT ITEM='LINE', POINTS=-3, R1=1, R2=6, SPACE:-1, COREOUT=3,
DISTYP='TANH', RELATIV='NO' $

536. $INPUT ITEM='LINE', POINTS=-3, RI=1, R2=5, SPACE=-I, COREOUT=4,
DISTYP='TANH', RELATIV='NO' $

Same number of points and same spacing on each.

WRITE FILE FOR GRID CODE

537. $INPUT ITEM='COMBINE', CONTENT='YES', COREIN=1, -5, FILEOUT=1$

538. $INPUT ITEM='END' $

Note that COREIN = 1, -5 reads Files 1, 2, 3, 4, and 5 from temporary

memory storage. Combined file stored on File 11.

74

$INPUJT ITEN='POINT', POINT=1, R=30.,0. $
$INPUT ITEM='POLNT', POINT=6, R=30.,-30. $
$INPUT ITEM='POINT', POINT=5, R=30.,30. $
$INPUT TTEM='SETNUM', SEGMENT=9, POINTS=81~ $
$INPUT ITEM='SETNUM', SEGMENT=., ITERMS= -9,-9 $
$INPUT ITEM='SETNUM', SEGMENT=2, POINTS=31 $
$INPUT ITEM='SETNUM', SEGMENT=3, POINTS=20 $
$ INPUT !TEM='SETNUM', SEGMENT=7, P0INTS=141 $
$INPUT ITEM='SETNUM', SEGMENT=6, POINTS=41 $
$INPUT ITEM='SETNUM', SEGMENT=5, ITERMS= -2,-l,-2 $
$INPUT ITEM='SETNUM', SEGMENT=8, ITERMS= -5,-6, MATH- 'DIF'I' $
$INPUT ITEM='SETNUM', SEGMENT=8, ITERMS= -8,-7, MATH= 'DIF+l' $
$INPUT ITEM='SETVAL', NUMBER=1, VALUE=.001 $
SINPUT ITEM='SETVAL', NUMBER=2, VALUE=.01 $
$INPUT ITEM='SETVAL', NUMBER=3, VALUE-.0001 $
$INPUT ITEM='SETVAL', NUMBER4, VALUE=.0015 $
$INPUT ITEM='CURRENT',POINTS= 500 , VALUES=
0. 0000000E+00, 0.0000000E+CO, 0.OOOOQOOE-00,
1.000000 1 0.0000000E-00, 0.0000000E+00 $

$INPUT ITEM='CURDIST', POINIS=-9, SPACE=-4,-2, END= 'LAST', 'LAST',
COREOUT=9 S

SINPUT ITEM='SWITCH', REORDER='REVERSEI' $
$INPUT ITEM='SCALE', SCALE=1,-1,1 $
$INPUT ITEM='INSFRT', COREIN=9, CORE0UT=I $
SINPUT ITEM='CONICUR' , TYPE='CIRCLE' , RADIUS= 30., ANGLE=270,90,

POINTSIO00. COREOUT=7 $
$INPUT ITEM='CURDIST', COREIN=7, POINTS=-7, SPACE=-3,-3, COREOUT=7 $
$INPUT ITEM='GETENP%, COREIN=7, POINT='FIRST', END='FIRST' $
$INPUT ITEM='LINE., POINTS=-6, R2=6, SPACE=7, END='FIRST' $
$INPUT ITEM=''SWJTCH', REOR~DER'REVERSE1', COREOUT=6 $
$INPUT ITEM='GETEND', COREIN=7, P0INT='LAST', END='FIRST' $
SINPUT ITEM='LINE', POINTS=-8, R2=5, SPACE=7, END='LAST', COREOUT=8 $
$INPUT ITEM='CURRENT' ,COREIN=6S
SINPUT ITEM='INSERT', COREIN=7$
SINPUT ITEM='INSERT', CQREIN=8, COREOUT=5 $
$INPUT ITEM='GETEND', COREIN=1, POINT='FIRST', END='FIRST' $
$INPUT ITEM='LINE', POENTS=-2, R2=1, SPACE=-2, RELATIV=''NO' $
$INPUT ITEM='SWITCH', REORDER='REVERSE1', COREOUT=2 $
$INPUT ITEM='LINE', POINTS=-3, R1=1, R2=6, SPACE=-1, COREOUT=3,

DISTYP='TANH', RELATIV='NO' $
$INPUT ITEM='LINE', POINTS=-3, RI=1, R2=5, SPACE=-I, COREOUT=4,

DISTYP='TANH'. RELATIV='NO' $
$INPUT ITEM='COIBINE', CONTENT='YES', COREIN=1,-5, FILEOUT=1$
$INPUT ITEM='END' $

75

Grid Code Inputs

SET UP BLOCK

1. $INPUT ITEM='INITIAL', KSTORE='CORE', ACCPAR='OPTIMUM', ITMAX=100,

TOL=1.OE-06, CONTYP='INITIAL' $

2. $INPUT ITEM='STORE', FILE=69, OUTER='NO' $
3. $INPUT ITEM='BLOCK', FILE=11 $

'INITIAL' with ACCPAR='OPTIMUM' invokes the elliptic grid generation system

which uses an algebraic grid to start with.

'STORE' directs that the final grid be placed on File 69.

'BLOCK' directs that all segments will be read from File 11 for this I

block case.

SET POINT INDICES - SEE COMPUTATIONAL SPACE DIAGRAM

4. $INPUT ITEM='POINT', POINT:1, LOCAT=1,1 $

Point #1's cartesian coordinates are associated with I=1, J=1 in curvilinear

coordinates at the lower left corner of the computational domain.

5. $INPUT ITEM:'POINT', POINT=2, OPOINT=1, SEGMENT:2, DIRECT:1 $

Locates Point #2 from #1 using the number of points on SEGMENT #2. DIRECT
tells it to go in the direction of increasing values from the first

curvilinear coordinate, I.

6. $INPUT ITEM='POINT', POINT=3, OPOINT=2, SEGMENT=I, DIRECT=1 $
7. $INPUT ITEM='POINT', POINT=4, OPOINT=3, SEGMENT=2, DIRECT:; $

8. $INPUT ITEM='POINT', POINT=5, OPOINT=4, SEGMENT=4, DIRECT=2 $
9. $INPUT ITEM='POINT', POINT=6, OPOINT=5, SEGMENT=5, DIRECT=-1 $

(This last one could have been:

$INPUT ITEM='POINT', POINT:6, OPOINT=1, SEGMENT:3, DIRECT=2 $)

Notice also that DIRECT=2 tells it to go along the second curvilinear

coordinate, J.

SET BLOCK SIZE

10. $INPUT ITEM='SIZE', SIZE=5 $

Point #5 determines block size because it contains the maximum

computational space values (curvilinear coordinates). That is, at Point

#5, I=NI, J=NJ.

76

SET BOUNDARY VALUES

11. $INPUT ITEM='SEGMENT', SEGMENT= 2, START= 1, END= 2 $

'SEGMENT' sets values from Point #1 to Point #2.

12. $INPUT ITEM='SEGMENT', SEGMENT= 2, START= 4, END= 3 $

Note the progression from Point #4 to Point #3. Spacing at 3 now matches
spacing at 2.

13. $INPUT ITEM='SEGMENT', SEGMENT= 1, START= 2, END= 3 $
14. $INPUT ITEM='SEGMENT', SEGMENT: 4, START= 4, END= 5, CLASS='FIX' $

15. $INPUT ITEM='SEGMENT' SEGMENT: 3, START= 1, END: 6, CLASS='FIX' $

16. $INPUT ITEM:'SEGMEN", SEGMENT= 5, START= 6, END= 5, CLASS='FIX' $

CLASS='FIX' prevents the points on the far field boundaries from moving
along the boundary. That is, they are fixed at the spacings they were set
up under in the boundary code.

17. $INPUT ITEM='ORTHOG', START=31,1,1, END=191,1,1, CONUPI=2 $

'ORTHOG' invokes a routine that attempts to keep the grid lines off the
surface of the airfoil orthogonal. CONUPI controls the frequency of
updating the control functions. See ORTHOG in the manual for additional
details.

18. $INPUT ITEM='CUT', START= 1, END= 2,

ISTART= 4, IEND: 3 $

Set up the wake line as a branch cut. See manual for details on branch

cuts.

19. $INPUT ITEM='END', CHECK='NO' $
20. $OUTPUT ITEM='ERROR', BLKERR='YES' $

21. $OUTPUT ITEM='END' $

ITEM='ERROR' asks for residual errors at each iteration. BLKERR='YES'
tells it to do ITEM='ERROR' for all blocks.

Note the INPUT and OUTPUT ITEM:'END'.

7

77

$INPUT ITEM='INITIAL', KSTORE='CORE', ACCPAR='OPTIMUM' , ITMAX=100,
TQL=1.OE-06, CONTYP='INITIAL' $

SINPUT ITEM='STORE', FILE=69, OUTER='NO' $
$INPUT ITEM='BLOCK', FILE=ll $
SINPUT ITEM='PQINT', POINT=1, LOCAT=1,1 $
$INPUT ITEM='PQINT', POINT=2, OPQINT=1, SEGMENT-2, DIRECT=1 $
$INPUT ITEM='POINT', POINT=3, OPOINT=2, SEGMENT=1, DIRECT=l $
$INPUT ITEM='POINT', POINT=4, OPOINT=3, SEGMENT-2, DIRECT=1 $
SINPUT ITEM='POINT', POINT=5, OPQINT=4, SEGMENT-4, DIRECT=2 $
SINPUT ITEM='POINT', POINT=6, QPOINT=5, SEGMENT-5, DIRECT=-I S
SINPUT ITEM='SIZE', SIZE=5 $
SINPUT ITEM='SEGMENT', SEGMENT= 2, START= 1, END= 2 $
SINPUT ITEM='SEGMENT', SEGMENT= 2, START= 4, END= 3 $
$INPUT ITEM='SEGNENT', SEGMENT= 1, START= 2, END= 3 $
$INPUT ITEM='SEGMENT', SEGMENT= 4, START= 4, END= 5, CLASS='FTX' $
SINPUT ITEM='SEGMENT', SEGMENT= 3, START= 1, END= 6, CLASS='FIX' $
SINPUT ITEM='SEGMENT', SEGMENT= 5, START= 6, END= 5, CLASS='FIX' $
$INPUT ITEM='ORTHOG', START=31,1,1, END=191,1,1, CONUPI=2 $
SINPUT ITEM='CUT', START= 1, END= 2,

ISTART= 4, IEND= 3 $
SINPUT ITEM='END', CHECKNO' $
$OUTPUT ITEM='ERROR', BLKERR'='YES' $
$OUTPUT ITEM='END' $

78

CONE-CYLINDER-FLARF, (1-T) EXAMPTF)

This example will illustrate the procedure for building a three-dimensional

grid composed of two blocks to describe the flow field around a cone-cylinder-

flare body. A line-by-line description of the inputs to the boundary code and

Ahe inputs to the grid code will be presented in addition to graphical

illustrations showing the result of each line. Figures 44 and 45 are line

drawings of the physical space and the computational space. The computational

domain is required for the solution of the flow field using finite difference or

finite volume techniqaes. Two* blocks, each having dimensions of 65 x 18 x 31

are combined to form the total region of interest around the cone-cylinder-flare

body. Symmetry conditions could be imposed and as a result only one block would

be necessary. The overall dimensions which describe the flow field were

selected to make use of the EAGLE Flow Solver. Specifically, the dimensions

were selected to determine the flow field arourd a cone-cylinder-flare body

operating at Mach = -.81 and various angles of attack.

Finally, please note that the ITEM="POINT" commands were not used in the

grid input data. An alternate method of grid generation is used for this

example as compared to the NACA 0012 example, presented previously.

BOUNDARY GENERATION

L6

y VAL.

' - 1.= 3.75
4X

Figure 4 . Flow Field in Physical Space

79

ALUEM 5

-- OUTER SURFACE EI UFC

1 ST 1.1.31J FREE FIELD

Figure 45. Computational Space (Block 1 and Block 2)

SET GEOMETRICAL VALUES

1. $INPUT ITEM="SETVAL",NUMBER=4,VALUE=.005$

2. $INPUT ITEM="SETVAL",NUMBER=5,VALUE=.005$

3. $INPUT ITEM="SETVAL",NUMBER=6,VALUE=.039$

These commands specify the values of the "SPACE=" input variables.

DEFINE END POINTS OF LINE SEGMENTS

4. $INPUT ITEM="POINT",POINT=1,R=0.0,0.0,0.0$

5. $INPUT ITEM="POINT",POINT:2,R=-I.50,O.O,0.0$

6. $IrIPJT ITEM="POINT",POINT:3,R=.90,•375,0.0$

7. $INPUT ITEM="POINT",POINT=4,R=I.65,.375,0.0$

8. $INPUT ITEM="POINT",POINT=5,R=3.75,.750,0.0$

9. $INPUT ITEM="POINT",POINT=6,R=3.75,7.00,O.0$

The point command specifies the end-points of a line segment which will

outline the region in which grid generation will be performed. These commands

are used by specifying R1= "POINT NO." and R2 "POINT NO.", where RI and R2

are the x, y, and z coordinates of the first and second end points of a

line segment. These commands appear where "LINE" segment input data are used to

specify the shape of the vehicle surface. A subsequent rotation produces a

thre6.-limensional grid field.

80

OUTER BOUNDARY (Block 1)

4y

90 dog PARABOLA

Figure 46. Curve Describing Outer Surface

10. $INPUT ITEM="CONICUR",CIJRPTS=1OO,TYPE="PARABOLA",LENGTH=5.25O,

WIDTH:7 .00, ANGL.E=O,90$

Deve-lops a conic boundary in the V', y', z' coordinate system. A p Arabola

is generated which has 100 points and is specified by a length of 5.250 and a

width of 7.00. The curv-i is generated in the x', y', z', system by developing

the parabola from the first point at 00 to the second point at 900.

x

0.0.0

Figure 47. Curve of Outer Surface Transformed to Global Coordinates

81

11. $INPUT ITEM="TRANS", POINTS: 100,OR IGIN 3.750,0,0,COS INESM- 1,0,0, 0 1, 0,

0,0,-I$

This command performs a coordinate transformation of the form, X' = aijX +

T(x,y,z). The local coordinate system (x', y', ') in which the curve is M
specified is transformed relative to the global system (x,y,z) by using the

transformation matrix, aij and a translation term, T(x,y,z). This process

transforms the previous parabolic arc to form the outer boundary of the solution

region. The origin of the transformed axes (x', y', z') is placed x = 3.75,

y : 0, z = 0 from the origin of the basic coordinate system. One hundred points are

transformed by this command.

12. $INPUT ITEMW'CURDIST" POINTSI100,DISTYP LINEAR",POINTS:65,COREOIJT=1 1

Distributes 65 points on the curve that had 100 points. A linear

distribution is used. The curve is stored in core location number 11.

13. $INPUT ITEM="BOUNCUR",POINTS=65$

y

z
CORE- 11

31 pts.

x . 180

Figure 48. Boundary of Outer Surface of Solution Region

82

14. $INPUT ITEM="ROTATE",CURPTS=65,ANGPTS:31,ANGLE=O,180,AXCOS=1,0,0

NORCOS=0,1,0,COREOUT=5$

Generates a surface using a 65-point curve which represents block 1

of the outer surface. The curve is placed at 31 angular positions to generate

the surface. The results are stored into core location number 5.

STAGNATION LINE (Block 1, Block 2)

OUTER SURFACE (65 POINTS)

STAGNATION LINE (18 POINTS)

-15,0, 0.0.0 X

-+.005

Figure 49. Stagnation Line Definition

15. $INPUT ITEM:"LINE",CURPTS=18,R=I:,R2:2,DISTYP="TANH",

SPACE=-4,RELATIV="NO",COREOUT=20$

Creates a line from point 1 (0,0,0) to point 2 (-1.50,0,0) using 18

points. A hyperbolio tarnent distribution is used with the first point off the

nose (0,0,0) a distance of .r 5 (SPACE = -4). The data is stored in core

location number 20.

16. $INPUT ITEM="BOUNCUR",COREIN=20,POINTS=18$

The stagnation line is used as an axis to perform a rotation. The

stagnation line is used as a bounding curve with the prescribed number of points

(CURPTS=18) used to generate a stagnation surface.

83

0.0 DEG

SN0ORCOS 1 X

S31 pts.

180.0 DEG

Figure 50. Block 1, Stagnation Surface

17. $INPUT ITEM="ROTATE",CURPTS=18,ANGPTS=31,ANGLE_-0,180,

AXCOS=1,,0,NORCOS= 0,1,0,COREOUT=I$

A stagnation line having 31 coincident angular-points at each point in the

-X direction is generated. This is a stagnation surface from which connectivity

to the outer surface i3 now maoa possible. This block 1 data is stored in core

location number 1.

18. $INPUT ITEM="BOUNCUR",COREIN=2G POINTS=18$

The stagnation line is input from core location number 20 and will be used

as an axis to perform a rotation to create a surface.

360.0 DEG

AXCOS 0.0

180.0 DEG

Tigure 51. Block 2, Stagnation Surface

84

19. $[14PUT ITEM:"ROTATh",CURPTS:18,ANGPTS:31,ANGLE=180,360

AXCOS=I,0,0,NORCOS=0,1,0,COREOUT=2$

A stagnation line having 31 coincident angular-points at each point in the

-X direction is generated. This is a stagnation surface from which connectivity

to the outer surface is now made possible. This block 2 data is stored in core

location number 2.

20. $INPUT ITEM="COMBINE",COREIN=l,2,FILEOUT=2$

The stagnation surfaces for block 1 and block 2 arc combined onto one fie

and stored in file number 2.

BACK sJRFACE (Block 1, Block 2)

Y 6 (3.75.7.0.0.0)

5 (3.75,.75,0.0)

x

z

Figure 52. Exit-Plane Definition

21. $INPUT IiEM:"LINE",CURPTS=8,Rl=5,R2=6,DISTYP="TANH",

SPACE=-5,RELATIV="NO",COREOUT=21$

This command creates a line from point 5 (3.75, .75, 0) to point 6 (3.75,

7.0, 3) with 18 points between these values. A hyperbolic tangent function is

used f'r point distribution, the second point is located .005 from the surface

of the body in the Y direction. This file is written to core location number 21.

22. $INPUT ITEM="BOUNCUR",COREIN=21,POINTS=18$

The line input from core location number 21 is used to create a surface by a

rotation that will follow. This command defines the line as an axis of rotation

for the creation of a surface.

85

NORCO 4tA C S
t

z a 18

Figure 53. Block 1, Exit-Boundary

23. $INPUT ITEM:"ROTATE,CURPTS=18,ANGPTS=31,ANGLE=O,18O,

AXCOS~lOONORCOSO, 1 ,O,COREOUT=3$

This command generates the exit-f low boundary surface for block 1 by

rotating the line that is input from core location number 21. A surface measuring 18

x 31 points is generated to form the exit-flow boundary surface. The results

are stored in core location number 3. The axial and normal direction unit vectors are

given by AXCOS=1,O,O and NORCOS=O,O, respectively.

6

24. $INPUT ITEM="BOUNCUR",COREIN=21,POINTS=18$

The line input from core location number 21 will be used to create a surface

by a rotation that will follow. This command defines the line as an axis of

rotation for the creation of a surface.

25. $INPUT ITEM="ROTATE",CURPTS=18,ANGPTS=31,ANGLE=180,360,

AXCOS:10,0 NORCOS:0,1,OCOREOUT=4$

This command generates the exit-flow boundary surface for block 2 by

rotating the line that is input from core location number 21. A surface

measuring 18 x 31 points is generated to form the exit-flow boundary surface.

The results are stored in core location number 4. The axial and normal

direction unit vectors are given by AXCOS=I,O,O and NORCOS=O,I,O, respectively.

26. $INPUT ITEM="COMBINE",COREIN:3,4,FILEOUT=3$

The exit-plane formed from the block I and the block 2 grid data are

combined onto one rile and stored in file number 3. This forms the total exit

surface boundary of the solution region.

INNER BOUNDARY (Block 1)

y

51 PTS

3 4

z

Figure 55. Line Segment 1 of Vehicle Boundary

27. $INPUT ITEM="LINE",CIURPTS=51,Rl=3,R2=4,DISTYP="LINEAR",

RELATIV="NO",COREOUT=13$

This input develops a straight line with 51 points from point 3 (.9, .375, 0)

to point 4 (1.65, .375, 0). A linear distribution is used to distribute 51 points

along the length of the line. The parameter DISTYP="LINEAR" selects a Linear

function to distribute the points. The points are then written to core location

number 13 (COREOUT=13).

87

Y 50 TA__W5

4

x

z

Figure 56. Line 2 Segment of' Vehicle Boundary

28. $INPUT ITEM="LINE",C(JRPTS=50,R1:1J,R2=5,DISTYP:"LINEAR",

RELATIV="N0" ,CQRE0UT= 14~$

This input develops a straight line with 50 points from point 4I (1.65, .375, 0)

to point 5 (3.75, .75, 0). A linear distribution is used to distribute 50

poirits along the length of the line. The parameter DISTYP='LINEAR", selects a

linear function to distribute the points. The points are then written to core

location number 14s (COP.EOJT=1J4).

CORE-14(50 PTS)

(100 POINTS)

LCOMMON POINT
z

Figiure 57. Insertion of Line Segment 2 to Segment 1

29. $INPUT ITEM="CURRENT",COREIN:13,POINTS:51$

This input takes the 51 points from core location number 13 and puts it into

the current position in central memory.

30. $INPUT ITEM = "INSERT", COREIN = 14, POINTSI = 50, START = 51, POINTS = 100$

This input inserts the 50 points stored in temporary core location number 14

to the end of the line which is point 51 on the current curve. POINTS=50

describes the number of points being inserted. START = 51, indicates which

point on the current curve to begin insertion of the 50 point curve from core

location number 14. A total of 100 points are generated (POINTS10).

40 PTS (TOTAL)SPAC(-6)

Y5

x

z

Figure 58. Point Redistribution of Line Segment 3

31. $INPUT ITEM="CURDIST",POINTSI100,DISTYP="TANH",POINTS=40,

SPACE=-6,RELATIV="NO",COREOUT=14$

This command will redistribute the 100 point curve (POINTSI=100) and use

a hyperbolic tangent function (DISTYP="TANH") to space the points from the

first point (Ri = 3) to the last point (R2 = 5). The second point off point 3

is located a distance .039 from that point (SPACE=-6). The spacings will be

taken as actual arc lengths because RELATIV="NO" is specified. Finally, the

40 point curve is saved in temporary core location, number 14. (COREOUT=14).

89

y
26 PTS 05

3 4

x

z

Figure 59. Line Segment J4 of Vehicle Boundary

32. $INPUT ITEM:"LINE",CURPTS=26,Rl:1,R2=3,DISTYP="LINEAR",

RELATIV="N0"$

This input develops a straight line with 26 points from point 1 (0,0,0)

to point 3 (.90, .375, 0.0). A linear distribution is used to space the

26 points along the length of the line. The parameter, DISTYP="LINEAR"

selects a linear function to distribute the points. The points are then

available in the current position in memory for further processing.

40 PTS

26 PrS 4

2 6 1 0 0 0 -C OR E -1 4

x
CURRENT CURVE

z

Figure 60. Insertion of Line Segment 3 to End of Line Segment 14

90

33. $INPUT ITEM="ISERT",COREIN=I4,POINTSI=40,START=26,POINTS=65,

COREOUT=12$

This input inserts the 40 points stored in temporary core location number 14

to the end of the line which is point 26 on the current curve. POINTS=40

describes the number of points being inserted. START=51 indicates which point

on the current curve to begin insertion of the 40 point curve from core location

number 14. A total of 65 points are generated (POINTS=65). The line, which

describes the shape of the body, is output to memory location, COREOUT=12.

34. $INPUT ITEM="BOUNCUR",POINTS=65$

This input sets the current curve as a bounding curve with the prescribed

number of points (POINTS=65). This will allow the rotation of the curve to

form a surface.

Y0

65 pts

x

180"-

Figure 61. Block 1, Vehicle Boundary

35. $INPUT ITEM:"ROTATE",CURPTS:65,ANGPTS:31,ANGLE=0,180,AXCOS:1,0,0

NORCOS=O,1,0,COREOUT=6$

Generates a surface using a 65 point curve (CURPTS=65) which represents

91

block 1 of the vehicle surface. The curve is placed at 31 angular positions to

generate the surface. The results are stored into core location number 6.

INNER/OUTER SURFACE (Block 1)

36. $INPUT ITEM="COMBINE",COREIN=5,6,FILEOUT=4$

The files describing the surfaces of the outer boundary of the solution

region and the inner boundary or vehicle surface are put onto file number 4.

OUTER BOUNDARY (Block 2)

y

/NORCOS

3 pt

Figure 62. Block 2, Boundary of Outer Surface of Solution Region

37. $INPUT ITEM="CURRENT",COREIN=11$

The curve (parabola) which describes the curvature of the outer surface of

92

the flow region is made current in memory.

38. $INPUT ITEM="BOUNCUR",POINTS=65$

The curve of the outer surface is defined as an axis of rotation for the

generation of an outer surface for block number 2.

39. $INPUT ITEM="ROTATE",CURPTS=65,ANGPT&31,ANGLE180,360,AXCO&1,0,0,

NORCOS=0,1,0,COREOUT=8$

Generates a surface using the 65 point curve which describes the

axisymmetric shape of the outer surface. The curve is placed at 31 angular

positions to generate the block 2 surface of the outer boundary. The surface

generation proceeds from the points located at 1800 to the points located at

3600. The results are stored into core location number 8.

65 pts.

z 180

Figure 63. Block 2, Vehicle Boundary

INNER BOUNDARY (Block 2)

40. $INPUT ITEM="CURRENT",COREIN=12$

The composite line which describes the curvature of the vehicle surface is

93

made current in memory.

41. $INPUT !TEM="BOUNCUR",POINTS=65$

The line which was made current is defined as an axis of rotation for the

generation of the vehicle surface for block 2.

42. $INPUT ITEM="ROTATE",CURPTS=65,ANGPTS=31,ANGLE=180,360,AXCOS=1,0,O,

NORCOS=O,1,0,COREOUT=9$

Generates a surface using a 65 point curve. The curve is placed at 31

angular positions to generate the block 2 surface of the vehicle boundary. The

surface generation proceeds from the points located at 1800 to the points

located at 3600. The results are stored into core location number 9.

INNER/OUTER BOUNDARY (Block 2)

43. $INPUT ITEM="COMBINE",COREIN=8,9,FILEOUT=5$

rhe inner surface from core location number 9 and the outer surface from

core location number 5 are combined to create the file describing the

inner/outer surfaces for block 2. Results are stored into file number 5.

44. $INPUT ITEM="END"$

94

SET GEOMETRICAL VALUES
5 1NP UT :TE>='SETVAL' .NUMiBER=4,VALUE=. 0055
SINPLT ITEM="SETVAL" .NUMIBER=5,VALUE=.005$
SINPUT ITEM="SETVAL'.NUMBER-6,VALUE=.039S

.., DEFINE END POINTS OF LINE SEGMENTS
SINPUT ITEM="POINT' ,POINT=I .R=O.O,.0,O.OS

*SINPUT ITEM='POINT".POINT=2,R=-1.50,0.O.0.OS
SINPUT iTEM='POINT",POINT=3,R=.90,.375,O.OS
SINPUT ITEM-'POINT",POINT=4,R=1.65,.375,0.OS
SINPUT ITEM="POINT",POINT=5,R=3.7'5,.750,0.OS
SINPUT ITEM-'POINT",POINT=6,R=3. 75,7.OO,O.OS

OUTER BOUNDARY
$INPUT ITEM= "CON ICUR", CURPTS=IO0, TYPE-" PARABOLA", LENGTH=5. 250,
WIDTH=7.00,ANGLE=0,90S

SINPUT ITEM='TRANS",POINTS= 100,ORIGIN 3. 750,0, 0, COSINES-1, ,,O, 1, 0,
0,0.-iS

SINPUT ITEM4="CURDIST',POINTST=lO0,DISTYP="LINEAR',POINTS-65,COREOUT=11,S
$INPUT ITEM-"BOUNCUR',POINT.-65S
$INPUT I TEM=ROTATE", CURPT~ F 5,ANGPTS=31,AN~GLE=0,180,AXCOS=1,0,0.
NORCOSO0.1,0, COREOUT=5S

STAGNATION LINE

SPACE=-4,RELATTV="NO' .COREOUT=20S
$INPUT ITEM="BOUNCUR" .COREIN=20,POINTS=18S
SINPUT ITEI="ROTTE".CU;RPTS=18,ANGPTS=31,.ANGLE=O, 180,

A-XCOS=,O.,,NORCOS0 ,1, 0, COREQUT- 1$
SINPUT ITEM="BOUNCUR",COREIN-2O.POINTS=18S
$INPUT ITEM='ROTAL. ',CURPTS=18,ANGPTS=31,ANGLE=180,360,
AXCOS=1.0,0,NORCOS=O. 1 ,,COREOUT=2S

S[NPUT ITEM4="COMBINE",COREIN=1,2,FILEOUT=2$
BACK SURFACE

$INPUT ITEM'-LINE",CURPTS=18,R1-5,R2-6,DISTYP'"TANH"l,
SPACE--5 ,RELATIV="NO'.COREOUT-21S

SINPUT ITEM-'BOUNCUR",COREIN-21,POINTS=18S
SINPUT ITEM='ROTATE",CURPTS-18,ANGPTS31,ANGLE=O, 180,

AXCOS=1.0,0. NORCOS=O,1,0, COREOUT-3S
SINPUT ITEM-=BOUNCUR",COREIN-21,POINTS=18S
SINPUT ITEM-'ROTATE",CURPTS=18.ANGPTS=31,ANGLE=180,360,

AXCOS=1, . 0, NORCOS-0, 1,0, COREOUT-4$
SINPUT ITEi="COMBINE",COREIN=3,4,FILEOUT=3S

INNER BOUNDARY - BLOCKi
SINPIUT iTEM=LINE".CURPTS=51,R1=3,R2=4,DISTYP-"LINEAR',

RELATIV'"NO" ,COREOUT=13S
SINPUT ITEM="LINE",CURPTS=50,RI'=4,R2-5,DISTYP="LINEAR",

RELATIV="NO".COREOUT=14S
SINPUT I TEM="CURRENT", CORE IN- 13, POINTS=51S
SINPLT ITEM=" INSERT", CORE IN- 14, POINTSI1=50, START=5 1, POINTS= 100$
SINPUT ITEM-"CURDIST".POINTSI-100,DISTYP-'TANH",POINTS=40,

SPACE=-6,RELATIV="NO" ,CORE0UT-14S
INPLT ITEM-=LINE',CURPTS=26,RI=1,R2'K3,DISTYP='LINEAR',

RELAT IV='NO"S
SINPUT !TEM"INSERT", COREIN- 14. POINTSI=40, START=26, POINTS=65,

COREOLT=12S
* SINPUT ITEM-"BOUNCUR . POINTS-65$

SINPUT I TEM- " ROTTE .CUR PTS65, 4GPTS= 31, ANGLE=, 180, AXCOS= 1,0. 0.
NORCOS=O.1.0. COREOUT6$

INNER/OUTER BOUNDARY - BLOCK1
SINPUT I TEM--COMB INE", CORE IN5,6, FILEOUT=4,

OUT="PLOT". SYMBOL=O.
RMIN=-L.50.-7.0.-7.0.RMAX-3.75,7.0,7.0S

OUTER BOUNDARY - BLOCK2
SINPUT ITEMi"CURRENT",COREIN-11S
SINPUT ITEM-"BOUNCUR" .POINTS-65S
SENPUT 1 E.4-"ROTATE". CURPTS-65. ANGPTS=3 1..ANGLE= 180. 360, AXCOS= 1.0. 0.

NCRCOS=0. 1,0,COREOUT-8S
INNER BOUNDARY - BLOCK2

95

$ INPUT IrEM='CURRENT.COREINI12S
SINPUT ITEM="BOUNCUR",POINTS=65S
SINPUT [TEM='ROTATE'.CURPTS=65,ANGPTS-31.ANGLE-18.36O.XXCOS-1.O.,O

NORCOS=O. 1 .OCOREOUT=9S
INNEP 'OUTER BOUNDARY - BLOCK2

$INPUT ITEM-"COMBINE",COREIN=8,9, FILEOCT=5.
OUT= 'PLOT". SYMBOLO.,
RMIN'=-1.5O-7.O-7.,RMAXp 3.75,7.O.7.OS

SINPUT !TEM-"END'S

96

CONE-CYLINDER-FLAR0P (3-D EXAMPLE)

GRID GENERATION

1. $INPUT ITEM= STORE",FILE=75,KSTORE:"CORE",ITMAX=1,TOL=1 .E-05,

TRIAD="YES" DFQRME,ACCPAR= OPTIMUM $
This command will store the grid coordinates to be generated on file, gf75.

The output will occur when the maximum number of iterations (ITMAX =1) or the

tolerar of the residuals have been reached (TOL =1. E-05). Since this code

uses SOR (Successive Over-Relaxation), the acceleration parameter is specified

(ACCPAR OPTIMUM").

2. $INPUT ITEM="INiTrIAL",BLE'JD:="ARC","ARC",CHECK="NO",OUTER="NO",

CONTYP='1RADIUS" ,AL=1Z

This command initializes the grid generation program. The blending function

in all three directions are set to use interpolations based on arc length,

BLEND="ARC", "ARC"I,. The execution of the routine will continue even though the

jacobian may be zero or negative, (CHECK:"NO"). The routine will write out the

cartesian coordinate, of the grid to separate arrays, (OUTER ="SEPARATE").

Finally, the type of contrrl. function selected is based on local radius,

(CONTYP="RADIUS"l).

FILE 3

FILE 4BLC I

FILE 2

65
b

FILE

FFILE 3

Figure 64. Connectivity of Block 1 to Block 2

97

3- $INPUT ITEM = "BLOCK",SIZE=65,18,31*

This input line states the size of each block (SIZE = 65, 18, 31).

n1e 2 11e 3 nle 4 file 5

outer outar
block I block I surface surface

Inner Inner
block 2block 2 race

stagnation surface exit surface block 1 block 2

Figure 65. Files Created by Boundary Program and Their Location

4. $INPUT ITEM,"FILE",START=I,18,I,END=65,18,31,CLASS="FIX",FILE=14,

REWIND="YES"$

5. $INPUT ITEM="FILE",START=1,1,1,END=65,1,31,CLASS="FIX",FILE=14,

REWIND="NO"$

6. $INPUT ITEM="FILE",START=65,1,1,END=65,18,31,CLASS="FIX",FILE=13,

REWIND="YES"$

7. $INPUT ITEM="FILE",START=1,1,1,END=l ,18,31,CLASS="FIX",FILE=12,

REWIND="YES"$

These input lines read in the boundary surfaces generated in the previous

surface generation routine. The points are read from a file (FILE:XX) based

on the inputs (START=x,y,z,END=x,y,z). These points are also classified as to

what type of points they are (CLASS="FIX"). REWIND="YES" rewinds the file

prior to reading.

8. $INPUT ITEM="INTERP",START=1,1,1,END=65,18,1,BLEND="ARC","ARC","ARC"$

9. $INPUT ITEM="INTERP",START=1,1,31,END=65,18,31,BLEND="ARC","ARC","ARC"$

These commands determine the unknown points on the sides of the computational

block by interpolation. Each section with unknown points is described by

START= . ., END= . .. , and they are also classified for boundary conditions

98

(CLASS= "FIX"). The type of interpolation is given by specifying the

interpolation used for the blending function, (BLEND="ARC", ARC", "ARC").

- BLOCK 2

10. $INPUT ITEM:"B3LOCK",SIZE=65,18,31$

11. $INPUJT IrfEM:"FILE",START=1,18,1,END65,18,31,CLASs-"FIX",FILE-15,

REWIND=YES

12. $INPUTr ITEM="FILE",S3TART=1,1,l,END=65,l,31,CLASS="FIX",FILE15,

REWIND="NO"$

13. $INPUT ITEM:"PILE",STAR 565,1,1,END=-65,18,31,CLASS-"FIX",FILE-13,

REWIND="NO"$

14. $INPUT ITEM="FILE",START=1,1,1,END=1,18,31,CLASS:M FIX",FILE:I2,

REWIND="NO"$

These input lines read in the boundary surfaces generated in the previous

surface generation routine. The points are read from a file (FILE=xx) based

on the inputs (START7-x,y,z,END~x,y,z). These points are also classified as to

what type of points they ar; (CLASS="FIXM). REWIND="YES" rewinds the file

prior to reading.

15. $INPUT ITM"NEPTR=,,,N=51,,LN=ACACI"R"

16. $INPUT ITEM ="INTERP"START=1,l,31,END:65,18,31,BLEND="ARC","ARC","ARC"$

These commands determine the unknown points on the sides of the computational

block by interpolation. Each section with unknown points is described by

START=. . ., END=. . ., and they are also classified for boundary conditions

(CLASS="FIX"I). The type of interpolation is given by specifying the

interpolation used for the blending function (BLEND="ARC","ARC","ARC").

Figure. 66 Block to, Blc qnefc yCt

99

17. $INPUT ITEt4z"C UTf,BL0C K-1 STAR T=1 ,1,1,END65,1 8, 1 1BLOC K-2,IST ART= 1,1, 31,

tEND=65, 18,31$

18. $INPUT ITEI4="CUT",BLOCK=1,START=1,1,31,END--65,18,31,IBLOCK--2,ISTART=1,1,1,

IEND=65, 18,31

These lines specify the coordinates for shared boundaries (Interfaces)

between blocks 1 and 2.

19. $INPUT ITEM="END"$

This line terminates the inputs to the grid field generation routine and

begins the computation of the grid field.

20. $OUJTPUT ITEM="ERR0R" ,BLKERR="YES"1$

This line requests the grid generation routine to write out the residual of

each block (BLKERR="YES") onto the output file.

21. $OUJTPUT ITEM:"SYSTEM",START=1,1,7,END=65,18,7$

This line writes the coordinates of a plane (START= 1, 1,7,END=65,18,7) onto

the output file.

22. $OUTPUT ITEM="END"$

This line terminates the output.

1 00

Figre 67. Description of Flow Region Generated by Grid Program

101

SINPUT ITEM="STORE",FILE=75,KSTORE"FILE",ITMAX-1,TOL-I.EO05,
TR IAD="YES", FORM="E" ,ACCPAR-"OPTIMUM"$

SINPUT ITEM="INITIAL",BLEND-"ARC","ARC",CHECK-"NO",OUTER"#NO",
CONTYP="RADIUS" ,ALL-"YES"$

BLOCKI
$INPUT ITEM-"BLOCK",SIZE=65, 18,31$
SINPUT ITEM="FILE",START=1,18,1,END65,18,31,CLASS-"FIX",FILE-14,
R EW IND-"YES "S

$INPUT ITEM="FILE",START=l,l,1,END-65,1,31,CLASS-"FIX",FILE-14,
REWIND-"NO"S

SINPUT ITEM="FILE",START651,1,END65,18,31,CLASS"FIX",FlLEI13,
REWIND-"YES"S

$INPUT ITEM="FILE",START=1,1,1,END-1,18,31,CLASS-"FIX",FILE=12,
REW IND="YES"S

$INPUT ITEM="INTERP",START=1,1,1,END-65,18,1,BLEND-"ARC","ARC","oaRC"$
$INPUT ITEM=" INTERP", START= 1,1, 31, END65, 18,3 1, BLEND-"ARC", "ARC", "ARC"S

BLOCK2
$INPUT ITEM="BLOCK",SIZE=65,18,31$
$INPUT ITEM="FILE",START=1,18,1,END=65,18,31,CLASS="FIX",FrLE=15,
R EW IND' YES" $

SINPUT ITEM="FILE",START=1,1,1,END-65,1,31,CLASS-"FIX",FILE=15.
REW IND'-"NO"$

SINPUT ITEM="FILE",START=65,1,1,END-65,18,31,CLASS="FIX",FLE-13I
REWIND-"NO"$

SINPUT ITEM="FILE",START=1,1,1,END-1,18,31,CLASS-"FIX",FILE=12,
REW IND'-"NO"S

$INPUT ITEM="INTERP",START=1,1,1,END-65,18,1,BLEND-"ARC","ARC","ARC"S
SINPUT ITEM=" INTERP", START= 1, 1,31, END-65,t18,31, BLEND-"ARC", "ARC". "ARC"S

** CUTS
SINPUT ITEM="CUT",BLOCK=1,START=1,1,I,END-65,18,1,IBLOCK-2,ISTART1,1,3l,

IEND=65, 18,31$
SINPUT ITEM="CUT",BLOCK1,START=1,1,31,END-65,18,31,IBLOCK=2,ISTART=1,1,1,

IEND=65, 18, 1$
SINPUT ITEM="END"S

PLANE THROUGH 3-D SYSTEM
$OUTPUT ITEM="ERRQR" ,BLKERR-"YES"S
$OUTPUT ITEM="SYSTEM",START=1, 1,7,END=65,18,7S
$OUTPUT ITEM="END"$

102

OGIVE-CYLINDER-OGIVE (4 BLOCKS)

The Program EAGLE Numerical Grid Generation System has the capability to model

finned bodies as shown in the following example. This example consists of an

ogive-cylinder-ogive body of rotation with a cylindrical sting attachment and

four equally spaced fins (Figure 68).

Detailed input for the surface and grid generation systems is presented in the

following text.

SURFACE INPUT DATA

1. $INPUT ITEM="SETVAL",tNUMBER=I,VALUE=0.03$

2. $INPUT ITEM="SETVAL",NUMBER=2,VALUE=0.2$

Lines 1 and 2 define numerical values used elsewhere in the surface

inputs and assigns each value a numerical reference.

3. $INPUT ITEM="SETNUM",SEGMENT=1,POINTS:35$

4. $INPUT ITEM="SETNUM",SEGMENT:2,POINTS=10$

5. $INPUT ITEM="SETNUM",SEGMENT=3,POINTS=25$

6. $INPUT ITEM="SETNUM",SEGMENT=4,POINTS=9$

7. $INPUT ITEM="SETNUM",SEGMENT=5,POINTS=46$

8. $INPUT ITEM="SETNUM",SEGMENT=6,POINTS=28$

9. $INPUT ITEM="SETNUM",SEGMENT=7,POINTS=9$

10. $INPUT ITEM="SETNUM",SEGMENT=8,POINTS=16$

11. $INPUT ITEM="SETNUM",SEGMENT=9,POINTS=9$

12. $INPUT ITEM="SETNUM",SEGMENT=1O,POINTS=16$

13. $INPUT ITEM="SETNUM",SEGMENT=11,POINTS=46$

14. $INPUT ITEM="SETNUM",SEGMENT=12,POINTS=9$

15. $INPUT ITEM="SETNUM",SEGMENT=13,POINTS=9$

Lines 3 through 15 define the number of grid points on each of the 13 line

segments used to define the model surface.

16. $INPUT ITEM="POINT",POINT=1,R=3.3333,1.0,O$

17. $INPUT ITEM="POINT",POINT=2,R=8.216,1.0,O$

103

zz

00

ob

L))

> a

La104

18. $INPUT ITEM="P0INT",POINT:3,R=1O.0,1.O,O$

19. $INPUT ITEMz"POINT",POINT:14,R=11.882,0.7,0$

20. $INPUT ITEM="P0INT"P0INT=5,R=72.0,O.7,0$

*21. $INPUT ITEM="P0INT",P0INT=6,R=40.0,60.0,0$

22. $INPUT ITEM="P0INT",POINT=7,R=3.3333,60.0,0$

23. $INPUT ITEM="POINT",IPOINT:8,R=50.0,60.O,0$

214. $INPUT ITEM="POINT",POINT=9,R=72.0,60.o,0$

25. $INPUJT ITEM="POINT",POINT10,R=72.0,1.8,0$

26. $INPUT ITEM="P0INT",POINT=11,R=-1.8,0.0,0$

27. $INPUJT ITEM="POINT",P0IN--12,R:-56.6667,0.0,0$

28. $INPUT ITEM="POINT",PCIN,'13,R=0.0,O.0,0$

29. $INPUT ITEM="POINT",POINT=11J,R=9.511457,1.8,0$

30. $IrNPUJT ITEM="POINT",POINT=15,R=11.5J49,1.8,0$

Lines 16 through 30 define the spatial location of 15 points used

to define the surfac - and assigns each point a numerical reference.

31. $INPUT ITEM="CONICUR",CURPTS=34,TYPE:"CIRCLE",RADIUS=6.056,

ANGLE=5660I28394, 90.0$

32. $INPUT ITEM="TRANS",P0INTS=314,0RIGIN=3.3333,-5.056,0,

COSINES=-1,0,0, 0,1,0, O,0,-1,COREOUT:1$

Lines 31 and 32 create an ogive nose conic section and linearly

distributes 314 points on the curve.

The transformation matrix

rotates this circular arc 180 degrees around the y axis. The change

of origin (ORIGIN=3.3333,-5.056,0) translates the curve to its final

position. The final curve is stored in temporary memory location (1).

33. $INPUT ITEt4"LINE",R1=1,R2=2,POINTS=-1$

105

34I. $INPUT ITEM="CURDIST",POINTSI=35,DISTYP="BOTH",RELATIV=M NO",

POINTS=35,SPACE:O.1,0.05,COREOUT=2$

Lines 33 and 34~ generate a 35-point (POINTS=-1) straight line between point 1

(3.3333,1.0,0) and point 2 (8.216,1.0,0). Grid paint spacing is fixed at both

ends of the curve. The line is finally stored in temporary memory location (2).

35. $INPUT ITEM="LINE",R1=2,R2=3,POINTS:-2,C0REOUT=3$

Line 35 generates a 10-point (POINTS =-2) straight line between point 2

(8.216,1.0,0) and point 3 (10.0,1.0,0). The line is then stored in temporary

memory location (3).

36. $INPUT ITEM="C0NICUR",CURPTS=37,TYPE="CIRCLE",RADIUS=6.056,

ANGLE=90.0,75. 1802273$

37. $INPUT ITEM="TRANS",POINTS=37,ORIGIN=10.0,-5.056,o,

COSINES=1,0,0, 0,1,0, 0,0,1,COREOJT=J$

Lines 36 and 38 generate a 37-point ogive boattail. The point spacing is

linear. The transformation matrix

aij 0 1

does not change the orientation of the curve, but the change of origin

(ORIGIN=10.0,-5.056,0) translates the curve to its final position.

The final curve is stored in temporary memory location (4i).

38. $INPUT ITEM ="C0NICUR",CURPTS=J4,TYPE="CIRCLE",RADIUS=6.056,

ANGL.E=75. 1802273,71 .89'458975$

39. $INPUT ITEM ="TRANS",P0INTS=14,0RIGIN=10.0,-5.056,0,

COSINES=1,0,0, 0,1,0, 0,0,1,COREOUT=5$

Lines 38 and 39 generate a ogive-to-sting connection and linearly

106

distributes 4 points on the line. The curve is then translated (not rotated)

and finally stored in temporary memory location (5).

40. $INPUT ITEM="LINE",RI=4,R2=5,POINTS=-3$

41. $INPUT ITEM="CURDIST",POINTSI=25,DISTYP="TANH",RELATIV="NO",

POitrTS=25,SPACE=0.10,COREOUT=6$

Lines 40 and 41 generate a 25-point (POINTS=-3) sting from point 4

(11.882,0.7,0) to point 5 (72.0,0.7,0) with a hyperbolic tangent distribution

concentrating points near the ogive-cylinder-ogive body.

The line segment is stored in temporary memory location (6).

42. $INPUT ITEM="CURRENT",COREIN=1,POINTS=34$

43. $INPUT ITEM="INSERT",COREIN=2,POINTSI=35,START=34,POINTS=68$

44. $INPUT ITEMK"INSERT",COREIN=3,POINTSI=10,START=68,POINTS=77$

45. $INPUT ITEM="INSERT",COREIN=4,POINTSI=37,START=77,POINTS=1135

46. $INPUT ITEM="INSERT",COREIN=5,POINTSI=4,START=113,POINTS=116$

47. $INPUT ITEM="INSERT",COREIN=6,POINTSI=25,START=116,POINTS=140,

COREOUT:10$

Lines 42 through 47 combine the six previously generated curves into one

curve which defines the two-dimensional outline of the ogive-cylinder-ogive body

with sting (Figure 69). The combined curve is stored in temporary memory location (10).

48. $INPUT ITEM="CURRENT",POINTS=250,

VALUES = 8.216000, 1.000000, 0.000000,

8.229360, 1.000000, 0.024381,

11.529260, 0.808795, 0.005479,

11.542620, 0.805339, 0.004030$

49. $INPUT ITEM:"CURDIST",POINTSI=250,POINTS=46,

DISTYP="TANH",SPACE=.05,RELATIV="NO",COREOUT=9$

Lines 48 and 49 generate a curve which defines one-half of the symmetric

fin section at the root. A list of 250 points defining the curve is read in and

107

0t

U,

C4,

oo

o14
0w

109

'-44

00

00

r--4

o, c

109'

then 46 points are distributed over the curve using a hyperbolic tangent

distribution to concentrate points near the leading edge. This final curve is then

stored in temporary memory location (9).

50. $INPUT ITEM="SCALE",POINTS=46,SCALE=1,1,-1,COREOUT=8$

Line 50 generates a mirror image reflection of the fin root section

across the z axis (Figure 70), and saves it in temporary memory location (8).

51. $INPUT ITEM="CURRENT",COREIN=10,POINTS= 140$

52. $INPUT ITEM="INSERT",COREIN=8,POINTSI=46,START=68,POINTS=140,

COREOUT:7$

Lines 51 and 52 call in the 140-point outline of the ogive-cylinder-ogive

body with sting and insert the 46-point fin root section starting at point 68.

The result is stored in temporary memory location (7).

53. $INPUT ITEM="CURRENT",COREIN=1O,POINTS=140$

54. $INPUT ITEM="INSERT",COREIN=9,POINTSI=46,START=68,POINTS=140,

COREOUT=6$

Lines 53 and 54 are analogous to 51 and 52 but insert the mirror image

fin root section and store the result in temporary memory location (6).

55. $INPUT ITEM:"CURRENT",POINTS=250,

VALUES = 9.428000, 1.700000, 0.000000,

9.436501, 1.700000, 0.015514,

11.536248, 1.700000, 0.002970,

11.544749, 1.700000, 0.002179$

56. $INPUT ITEM = "CURDIST",POINTSI=250,POINTS=46,

DISTYP="TANH",SPACE=.0318,RELATIV="NO",COREOUT=3$

Lines 55 and 56 read in the coordinates of the 250-point curve defining one-

110

half of the symmetric airfoil section at the fin tip. Forty-six points are

distributed on the curve using a hyperbolic tangent distribution to concentrate

points near the leading edge. The final result is stored in temporary memory

location (3).

57. $INPUT ITEM = "SCALE",POINTS=46,SCALE=1,1,-I,COREOUT=5$

Line 57 reflects a mirror image of the fin-tip, airfoil section for use on

the other side of the Block. This curve is stored in temporary memory location

(5).

58. $INPUT ITEM="LINE",R1:14,R2:15,POINTS=-11,

DISTYP="TANH",SPACE=-,RELATIV="NO" ,COREOUT=2$

Line 58 generates a 46-point (POINTS = -11) line from point 14

(9.51457,1.8,0) to nr;int 15 (11.549,1.8,0) to be used to close off the

fin tip. Points are concermtrated near the leading edge of the line using a

hyperbolic tangent distribution. The completed line is stored in temporary

memory location (2).

59. $INPUT ITEM="BOUNCUR",COREIN=3,POINTS=46$

60. $INPUT ITEM="BOUNCUR",COREIN=2,POINTS=46$

61. $INPUT ITEM:"BLEND",POINTS=46,CURVES=2,COREOUT=I$

Lines 59 through 61 create a 46 point by 2 point surface by blending the

fin-tip section and the line that was created in input line 58 (Figure). The

surface is stored in temporary memory location (1).

62. $INPUT ITEM="BOUNCUR",COREIN=9,POINTS=46$

63. $INPUT ITEM:"BOUNCUR",COREIN:3,POINTS=46$

64. $INPUT ITEM="BLEND",POINTS=46,CURVES=15$

Lines 62 through 64 generate one-half of the fin surface by blending the fin

tip section and the fin root section with 15 intermediate airfoil sections

(Figure 71).

111

65. $INPUT ITEM="INSERT",COREIN=1,POINTSI=46,2,START=1,15,POINTS=46,16,

COREOUT=4$

Line 65 inserts the 46 x 2 point fin tip surface (stored in temporary memory

location 1) into the 46 x 15 point fin surface yielding a complete 46 x 16 point

fin surface which is stored in temporary memory location (4).

66. $INPUT ITEM="BOUNCUR",COREIN=5,POINTS=46$

67. $INPUT ITEM="BOUNCUR",COREIN=2,POINTS=46$

68. $INPUT ITEM="BLEND",POINTS=46,CURVES=2,COREOUT=1$

69. $INPUT ITEM="BOUNCUR",COREIN=8,POINTS=46$

70. $INPUT ITEM="BOUNCUR",COREIN=5,POINTS=46$

71. $INPUT ITEM="BLEND",POINTS=46,CURVES=15$

72. $INPUT ITEM="INSERT",COREIN=1,POINTSI=46,2,START=1,15,POINTS=46,16,

COREOUT:5$

Lines 66 through 72 accomplish the same tasks as lines 59 through 65

but for a mirror image fin surface to complete the symmetric-airfoil

fin. The airfoil symmetry allows the axisymmetric body to be broken

into four blocks with the block boundaries being the fin symmetry

plane. The resulting surface is stored in temporary memory location (5).

73. $INPUT ITEM="BOUNCUR",COREIN=6,POINTS=1405

74. $INPUT ITEM="BOUNCUR",COREIN=7,POINTS=140$

75. $INPUT ITEM="ROTATE",CURPTS=140,ANGPTS=10,ANGLE=-45,45,

DISTANG="BOTH",SPACANG=O.O5,0.O5,AXCOS=I,0,O,NORCOS=O,1,0,

FILEOUT=1$

Lines 73 and 74 designate the 140-point curves defining the outline of the

ogive-cylinder-ogive with sting (with fin root section and mirror image fin root

section) as bounding curves for a surface generation. Line 75 creates a surface

of revolution by interpolating the bounding curves and forms the missile body

surface from -45 to 45 degrees(Figure 72). The 140 x 10 point surface is stored

in output File (1).

76. $INPUT ITEM="BOUNCUR",COREIN=6,POINTS=140$

112

-
C10

00

o 0

C;4

oc

-'-4

0

040

* aa

-44

0

113

77. $INPUT ITEM="BOUNCUR",COREIN=7,POINTS=140$

78. $INPUT ITEM="ROTATE",CURPTS=140,ANGPTS=1O,ANGLE=45,135,

DISTANG="BOTH",SPACANG=0.05,0.O5,AXCOS=1,0,O,NORCOS=0,1,0,

FILEOUT=2$

Lines 76 through 78 generate the missile body surface from 45 to 135

degrees. The surface is stored in output File (2).

79. $INPUT ITEM="BOUNCUR",COREIN=6,POINTS=140$

80. $INPUT ITEM="BOUNCUR",COREIN=7,POINTS=140$

81. $INPUT ITEM="ROTATE",CURPTS=140,ANGPTS=1O,ANGLE=135,225,

DISTANG="BOTH",SPACANG=0.05,0.05,AXCOS=1,0,0,NORCOS=0,1,0,

FILEOUT=3$

Lines 79 through 81 generate the missile body surface from 135 to 225

degrees. The surface is then stored in output File (3).

82. $INPUT ITEM="BOUNCUR",COREIN=6,POINTS=140$

83. $INPUT ITEM="BOUNCUR",COREIN=7,POINTS=140$

84. $INPUT ITEM="ROTATE",CURPTS=140,ANGPTS=10,ANGLE=225,315,

DISTANG="BOTH",SPACANG=0.05,0.O5,AXCOS=1,,0,NORCOS=0,1,0,

FILEOUT=4$

Lines 82 through 84 generate the missile body surface from 225 to 315

degrees. The surface is then stored in output File (4).

85. $INPUT ITEM="TRANS",COREIN=5,POINTS=46,16,

COINES=1,0,0, 0,.707,.707, 0,-.707,.707, FILEOUT=5$

86. $INPUT ITEM="TRANS",COREIN=4,POINTS=46,16,

COSINES=1,0,0, 0,.707,.707, 0,-.707,.707, FILEOUT=6$

Lines 85 and 86 place the 46 x 16 fin surfaces at the +45 degree position

for use as the fin boundaries between Blocks 1 and 2. The new fin surfaces are

stored in output Files 5 and 6.

87. $INPUT ITEM="TRANS",COREIN=5,POINTS=46,16,

COSINES=1,0,0, 0,.707,-.707,0,.707,.707,FILEOUT=7$

114

0

-A-

44*

>4 -0

0
00

1-4

-4

-44

0

-4

115

88. $INPUT ITEM="TRANS",COREIN=4,POINTS=46,16,

COSINES=1,0,O, 0,.707,-.707, O,.707,.707,FILEOUT=8$

Lines 87 and 88 place the 46 x 16 fin surfaces at the -45 degree

position for use as the fin boundaries between Blocks 1 and 4. The new fin

surfaces are stored in output Files 7 and 8.

89. $INPUT ITEM="TRANSn,COREIN=5,POINTS=46,16,

COSINES=1,0,O, O,-.707,-.707,0,.707,-.707,FILEOUT=9$

90. $INPUT ITEM="TRANS",COREIN=4,POINTS=46,16,

COSINES=1,,0, 0,-.707,-.707, 0,.707,-.707,FILEOUT=10$

Lines 89 and 90 place the 46 x 16 fin surfaces at the 225 degree position

for use as the fin boundaries between Blocks 3 and 4. The new fin surfaces are

stored in output Files 9 and 10.

91. $INPUT ITEM="TRANS",COREIN=5,POINTS=46,16,

COSINES=1,0,0, 0,-.707,.707, 0,-.707,-.707,FILEOUT=33$

92. $INPUT ITEM="TRANS",COREIN=4,POINTS=46,16,

COSINES=1,0,0, 0,-.707,.707, 0,-.707,-.707,FILEOUT=35$

Lines 85 and 86 place the 46 x 16 fin surfaces at the 135 degree position

for use as the fin boundaries between Blocks 2 and 3. The new fin surfaces are

stored in output Files 33 and 35.

93. $INPUT ITEM="LINE",R1=14,R2=6,POINTS=-12$

94. $INPUT ITEM="CURDIST",POINTSI=9,DISTYP="TANH",RELATIV="NO",

SPACE=0.1,POINTS=9,COREOUT=1$

Lines 93 and 94 generate a line from the leading edge of the fin tip to the

outer boundary with points concentrated near the fin tip. The line runs from

point 14 (9.51457,1.8,0) to point 6 (40.0,60.0,0) and has 9 points (POINTS =

-12). The purpose of the line is to control the grid lines coming off the fin

tip. The line is then stored in temporary memory location (1).

95. $INPUT ITEM="TRANS",COREIN=IPOINTS=9,

COSINES=1,0,O, 0,.707,.707, O,-.707,.707,FILEOUT=34$

116

96. $INPUT ITEM="TRANS",COREIN1,POINTS=9,

COSINES=1,0,0, 0,.707,-.707, 0,.707,.707,FILEOUT=14$

97. $INPUT ITEM="TRANS",COREIN=1,POINTS=9,

COSINES=1,0,0, 0,-.707,-.707, O,.707,-.707,FILEOUT=15$

98. $INPUT ITEM="TRANS",COREIN=1,POINTS=9,

COSINES=1,0,0, 0,-.707,.707, 0,-.707,-.707,FILEOUT=16$

Lines 95 through 98 place the leading edge controlling line at -45, +45,

135, and 225 degree fin positions. The lines are stored in output files 34, 14,

15, and 16 respectively.

99. $INPUT ITEM="LINE",Rlz15,R2=8,POINTS=-13$

100. $INPUT ITEM="CURDIST",POINTSI=9,DISTYP="TANH",RELATIV="NO",

SPACE=0.1,POINTS=9,COREOUT=1$

101. $INPUT ITEM="TRANS",COREIN=1,POINTS=9,

COSINES=1,0,0, 0,.707,.707, 0,-.707,.707,FILEOUT=17$

102. $INPUT ITEM="TRANS",COREIN=1,POINTS=9,

COSINES=1,0,0, 0,.707,-.707, 0,.707,.707,FILEOUT=18$

103. $INPUT ITEM="TRANS",COREIN=1,POINTS=9,

COSINES=1,0,0, 0,-.707,-.707, 0,.707,-.707,FILEOUT=19$

104. $INPUT ITEM="TRANS",COREIN=1,POINTS=9,

COSINES=1,0,0, 0,-.707,.707, O,-.707,-.707,FILEOUT=20$

Lines 99 through 104 are analogous to lines 93 through 98, but generate

controlling grid lines from the trailing edge of each fin to the outer boundary.

The lines are stored in output files 17 through 20 respectively.

105. $INPUT ITEM="CONICUR",CURPTS=60,TYPE="CIRCLE",

RADIUS=60.0,ANGLE=90.0,O.O$

106. $INPUT ITEM="TRANS",POINTS=60,ORIGIN=3.3333,0,0,

COSINES:-1,0,0, 0,1,0, 0,0,-1,COREOUT=1$

Lines 105 and 106 generate a circular are which will be the upstream edge of

the outer boundary. The arc is translated (ORIGIN=3.3333,0,0) and rotated

around the y axis using the transformation matrix

117

aij = I
0 0 -1

Sixty points are linearly distributed on the arc. The resulting curve is

stored in temporary memory location (1).

107. $INPUT ITEM="LINE",RI:6,R2=7,POINTS=-4$

Line 107 generates a line which continues the outer boundary. The line is

from point 6 (40.0,60.0,0) to point 7 (3.3333,60.0,0) and has 9 points (POINTS=

-4) linearly distributed on it.

108. $INPUT ITEM="INSERT",COREIN:1,POINTSI=60,START=9,POINTS:68$

Line 108 combines the circular arc and line Just generated for the outer

boundary and linearly distributes 68 points on the new curve.

109. $INPUT ITEM="CURDIST",POINTSI=68,DISTYP="TANH",RELATIV="NO",

POINTS=68,SPACE=0.2$

Line 109 changes the point distribution on the outer boundary from a linear

to a hyperbolic tangent distribution with points concentrated near the nose.

110. $INPUT ITEM="SWITCH",POINTS=68,REORDER="REVERSE1",COREOUT=1$

Line 110 reorders the numbering of points on the outside boundary.

111. $INPUT ITEM="LINE",RI=6,R2=8,POINTS=-5,

DISTYP="BOTH",RELATIV="NO",SPACE=-2,-2,COREOUT=2$

Line 111 draws a line from point 6 (40.0,60.0,0) and point 8 (50.0,60.0,0)

and distributes 46 points (POINTS = -5) on the line. The point spacing at each

end of the line is specified. The result is stored in temporary memory location

(2).

118

112. $INPUT ITEM="LINE",RI=8,R2=9,POINTS=-6$

Line 112 draws a line from point 8 (50.0,60.0,0) and point 9 (72.0,60.0,0)

and linearly distributes 28 points (POINTS = -6) on it.

113. $INPUT ITEM="CURDIST",POINTSI=28,DISTYP="TANH",RELATIV="NO",

SPACE=O.2,POINTS=28,COREOUT=11$

Line 113 distributes 28 points over the last segment of the outer boundary.

The points are distributed using a hyperbolic tangent function. The final curve

is stored in temporary memor4 location (11).

114. $INPUT ITEM="CURRFNT",COREIN=1,POINTS=68$

115. $INPUT ITEM="INSERT",COREIN=2,POINTSI=46,START=68,POINTS=113$

116. $INPUT ITEM="INSERT",COREIN=11,POINTSI=28,START=113,POINTS=140,

COREOUT=11$

Lines 114 through 116 2ombine all segments of the outer boundary into one

curve with 140 points (Figure 73).

117. $INPUT ITEM="BOUNCUR",POINTS=140$

118. $INPUT ITEM="ROTATE",CURPTS=140,ANGPTS=10,ANGLE=-45,45,

DISTANG="BOTH",SPACANG=0.05,0.05,AXCOS=1,0,0,NORCOS=0,1,0,FILEOUT=21$

Lines 117 and 118 rotate the 140-point outer boundary between -45 and +45

degrees to create the outer boundary for Block I (Figure 74). The surface is

then stored in File 21 (FILEOUT=21).

119. $INPUT ITEM="LINE",RI=lO,R2=9,POINTS=-7$

120. $INPUT ITEM="CURDIST",POINTSI=9,DISTYP="TANH",RELATIV="NO",

POINTS=9,SPACE=O.I,COREOUT=12$

121. $INPUT ITEM="LINE",RI=5,R2=10,POINTS=-8$

122. $INPUT ITEM="INSERT",COREIN=12,POINTSI=9,START=16,POINTS=24,

COREOUT=14$

Lines 119 through 122 create a 24-point back boundary with grid points

119

00

00

o _o

02

concentrated in the fin region. Line 119 generates a line from point 10

(72.0,1.8,0) to point 9 (72.0,60.0,0) with 9 points (POINTS=-7). Line 120

redistributes 9 points on this line using a hyperbolic tangent function to

concentrate points near the fin. Line 121 generates a line from point 5

(72.0,0.7,0) to point 10 (72.0,1.8,0) and linearly distributes 16 points

(POINTS=-8) on the line. Line 122 combines the current line with the line in

temporary memory location 12.

123. $INPUT ITEM:"BOUNCUR",POINTS=24$

124. $INPUT ITEM="ROTATE",CURPTS=24,ANGPTS=10,ANGLE=-45,45,

DISTANG="BOTH",SPACAN(z0.05,0.05,AXCOS=1,0,0,NORCOS=0,1,0,

FILEOUT=22$

Lines 123 and 124 rotate the 24-point back boundary line with 10 angular

points between -45 and +45 degrees to create the Block 1 back boundary surface

(Figure 75). The surface is stored in File 22 (FILEOUT=22).

125. $INPUT ITEM="LINE",R11,R2=12,POINTS=-9$

126. $INPUT ITEM="CURDIST",POINTSI=9, DISTYP="TANH", RELATIV="NO",

POINTS=9,SPACE=0.1,COREOUT=13$

127. $INPUT ITEM="LINE",RI=13,R2=ll,POINTS=-10$

128. $INPUT ITEM="INSERT",COREIN=13,POINTSI=9,START=16,POINTS=24,

COREOUT=15$

Lines 125 through 128 generate a 24-point front stagnation line boundary

with point concentrated in the fin region. The line is stored in temporary

memory location (15). Line 125 creates a line from point 11 (-1.8,0.0,0) to

point 12 (-56.6667,0.0,0) with a linear distribution of 9 points (POINTS=-9).

Line 126 distributes 9 points using a hyperbolic tangent distribution to

concentrate points in the fin region. Line 127 creates a line from point 13

(0.0,0.0,0) to point 11 (-1.8,0.0,0) with a linear distribution of 16 points

(POINTS=-10). Line 128 inserts the line created in line 125 into the

current line and stores the result in temporary memory location (15).

129. $INPUT ITEM="BOUNCUR",POINTS=24$

121

o

122

00

123

130. $INPUT ITEM="R0TATE",CURPTS=24,ANGPTS=1O,ANGLE=-45,45,

DISTANG="B0TH",SPACANG0.05,0.o5,AXCOS=-1,O,0,NoRCOSo, 1,0,

RMAX=100, 100, 100,FILEOUT=23$

Lines 129 through 130 rotate the 211-point front stagnation line from -415 to
+415 degrees with 10 angular points to create the front boundary for Block 1.

The result is stored in File 23.

131. $INPUT ITEM="BOUNCUR",COREIN:1 1, POINTS= 110$

132. $INPUT ITEM="R0TATE",CURPTS=140,ANGPTS10,ANGLE=145, 135,

DISTANG="BQTH",SPACANG=0.05,0.05,AXC0S=1,0,0,NRCS=0, 1,0,

FILEOUT=24$

133. $INPUT ITEM="BOUNCUR",CREIN14,P0INTS2I$

1341. $INPUT ITEM="ROTATE",CURPTS=21,ANGPTS=10,ANGLE=J45, 135,

DISTANG="BOTH",SPACANG:0.05,0.05,AXCOS=1,0,0,N0RCOS=O, 1,0,

FILEOUT=25$

135. $INPUJT ITEM="B0UNCURff,COREIN=15,POINTS2$

136. $INPUT ITEM="R0TATE",CURPTS=24,ANGPTS=10,ANGLE=45, 135,

DISTANG="B0TH",SPACANG=0.05,0.05,AXC0S=-l,0,0,N0RC0S=0, 1,0,

FILEOUT=26$

Lines 131 through 136 create the outer boundary, the front stagnation line

boundary, and the back boundary for Block 2.

137'. $INPUJT ITEM="B0UNCUR",C0REIN=11,P0INTS1140$

138. $INPUJT ITEM="ROTATE",CURPTS=140,ANGPTS10,ANGLE=135,225,

DISTANG="B0TH",SPACANG=0.05,0.05,AXC0S:1,0,0,N0RCOS=0,1,0,

FILE0UT=27$

139. $INPUT ITEM="BOUNCUR",CREIN=114,POINTS21$

1410. $INPUT ITEM="ROTATE",CURPTS=211,ANGPTS=10,ANGLE=135,225,

DISTANG:"BOTH",SPACANG=0.05,0.05,AXCOS~l1,0j,0,NORCS=0, 1,0,

FILEOUT=28$

1411. $INPUJT ITEM="BOLJNCUR",C0REIN=15,POINTS21$

1412. $INPUJT ITEM="ROTATE",CURPTS=24,ANGPTS=10,ANGLE=135,225,

DISTANG="BOTH",SPACANG0.05,005,AXCS=-1,0,0,NORC0S=0,1,.0,

FILEOUT=29$

124

Lines 137 through 142 create the outer boundary, the front stagnation line

boundary, and the back boundary for Block 3.

143. $INPUT ITEM="BOUNCUR",COREIN=11,P0INTS=14O$

144. $INPUJT ITEM="ROTATE",CURPTS140,ANGPTS=10,ANGLE=225,315,

DISTANG="B0TH",SPACANG=O.05,0.05,AXC0S=1,0,0,NORCOS=0, 1,0,

FILEOUT= 30$

145. $INPUT ITEM="B0UNCUR",COREIN=14,POINTS=24$

146. $INPUT ITEM:"ROTATE",CtJRPTS=24,ANGPTS=10,ANGLE:225,315,

DISTANG="BOTH",SPACAN -:0.05,0.05,AXCOS=1,0,0,NORCOS=0,1,0,

FILEQUT=31$

147. $INPUT ITEM="BOUNCUR" , CREIN= 15, POINTS=24$

148. $INPUT ITEM="ROTATE",CURPTS=24,ANGPTS=10,ANGLE=225,315,

DISTANG="BOTH",SPACANG=0.05,0.05,AXC0S=-1,0,0,N0RCOS=0, 1,0,

FILE0UT= 32$

Lines 143 through 148 create the outer boundary, the front stagnation line

boundary, and the back boundary for Block 4.

149. $INPUJT ITEMWC0MBINE", FILEIN=1,21,22,23,114,18,34,17,8,5,

FILE0UT=40$

150. $INPUT ITEM="COMBINE",FILEIN=2,24,25,26,34,17,16,20,6,33,

F ILE0UT=50$

151. $INPUJT ITEM="COMBINE",FILEIN=3,27p2B,29,16,20,15,19,35,9,FILEOUT=60$

152. $INPUT ITEM="COMBINE",FIL.EIN=4,30,31,32, 15,19, 14, 18, 10,7,

FILEOUT=70$

Lines 149 through 152 combine all the output files for a given block (Blocks

1 through 4 respectively) into one output file (Files 40 through 70

respectively).

153. $INPUJT ITEMz"END"$

Line 153 terminates the input to the surface generation code.

125

SINPUT ITEM ' SEIVAL", NUMBER = 1. VALUE = 0.03 S
$INPUT ITEM = 'SETVAL", NUMBER = 2. VALUE = 0.2 S
SINPUT ITEM = "SETNUM", SEGMENT = 1, POINTS = 355
SINPUT ITEM = "SETNUM", SEGMENT = 2. POINTS = 10$
SINPUT ITEM - "SETNUM", SEGMENT = 3, POINTS = 25S
SINPUT ITEM = "SETNrM", SEGMENT = 4, POINTS = 9$
SINPUT ITEM - "SETNUM", SEGMENT = 5, POINTS = 46S
S$INPUT ITEM ="SETNUM", SEGMENT = 6, POINTS = 28$
SINPUT ITEM = "SETNUM", SEGMENT = 7, POINTS = 9S
SINPUT ITEM - "SETNUM", SEGMENT = 8, POINTS = 16$
$INPLT ITEM = "SETNUM", SEGMENT = 9, POINTS = 9$
SINPUT ITEM = "SETNUM", SEGMENT = 10, POINTS =16$
$INPLUT ITEM - "SETNUM", SEGMENT = 11, POINTS =46$
$INPUT ITEM = "SETNUM", SEGMENT = 12, POINTS = 9$
SINPUT ITEM = "SETNUM", SEGMENT = 13, POINTS -9$
SINPUT ITEM = "POINT", POINT = 1, R = 3.3333, 1.0, OS
SINPUT ITEM - "POINT", POINT = 2, R = 8.216, 1.0, Os
SINPUT ITEM = "POINT", POINT = 3, R = 10.0, 1.0, OS
SINPUT ITEM = "POINT", POINT = 4, R = 11.882, 0.7, O$
SINPUT ITEM = "POINT", POINT = 5, R = 72.0, 0.7, 0$
$INPUT ITEM = "POINT", POINT = 6, R = 40.0, 60.0, OS
$INPUT ITEM -"POINT", POINT = 7, R = 3.3333, 60.0, OS
SINPUT ITEM = "POINT", POINT = 8, R = 50.0, 60.0, OS
SINPUT ITEM = "POINT", POINT =9, R = 72.0, 60.0, OS
SINPUT ITEM = "POINT", POINT =10. R -72.0, 1.8, OS
SINPUT ITEM = "POINT", POINT =11, R -- 1.8, 0.0, 05
SINPUT ITEM = "POINT", POINT = 12, R -- 56.6667, 0.0, 0S
$INPUT ITEM = "POINT", POINT = 13, R 0.0, 0.0, 0$
SINPUT ITEM = "POINT", POINT = 14, R -9.51457, 1.8, OS
SINPUT ITEM = "POINT", POINT = 15, R -11.549, 1.8, OS
$INPUT ITEM = "CONICUR",CURPTS=34,TYPE="CIRCLE",RADIUS=6.056,

ANGLE=56 .60428394 ,90. OS
SINPUT ITEM = "TRANS",POINTS=34,ORIGIN=3.3333,-5.056,0,

COSINES=-1,0,O, 0,1,0, O,0,-1,COREOUTJ=r$
SINPUT ITEM = "LINE", RI = 1, R2 = 2, 1UINTS = -IS
SINPUT ITEM = "CURDrST",P01NT5SI35,DiSTYP="BOTH",RELATIV="NO,.

POINTS=35,SPACE=0.1I,O.O5,COREOUT=2$
$INPUT ITEM = "LINE", RI - 2, R2 = 3, POINTS = -2, COREOUT= 3 S
$INPUT ITEM = "CONICUR",CURPTS=37,TYPE="CIRCLE",RADIUS=6.056,

ANGLE=9O.O,75. 1802273$
SINPUT ITEM = "TRANS",POINTS=37.ORIGIN=10.0,-5.056,0,

COSINES=1,O,0, 0,1,0, 0.0,1, COREOUT=4$
SINPUT ITEM = "CONICUR",CURPTS=4,TYPE-"CIRCLE",RADIUS=6.056.

ANGLE=75. 1802273,71.89458975S
$INPUT ITEM = "TRANS' ,POINTS=4,ORIGIN=1O.O,-5 .056,0,

COSINES=1,0,0, 0,1,0, 0,0,1, COREOUT=5$
SINPUT ITEM ="LINE", Ri 4, R2 = 5, POINTS = -3S
SINPUT ITEM = "CURDIST",POINTSI=25,DISTYP="TAiNH",RELATIV="N'O",

POINTS=25 ,SPACE'=0. 10,COREOUT=6$
SINPL'T ITEM = "CURRENT",COREIN=l,POINTS=34S
SINPUT ITEM = "INSERT",COREIN=2,POINTSI=35,START=34,P01NTS=68$
$INPUT ITEM = "INSERT",COREIN=3,POINTSI=10,START=68,POINTS=77S
SINPUT ITEM = "INSERT",COREIN=4,POINTSI=37,START=77,POINTS=113S
SINPUT ITEM = "INSERT",C0REIN=5,POINTSI=4,STAKRT=113,POINTS=116S
SINPUT ITEM = "INSERT",COREIN=6,POINTSI=25,START=116,POINTS=140,
COREOUT= 105

SINPUT ITEM "CURRENT",P01NTS=250,
VALUES = 8.216000, 1.000000, 0.000000,

8.229360. 1.000000, 0.024381,
8.242720, 1.000000, 0.034066,
8.256080, 1.000000, 0.041321,
8.269440, 1.000000, 0.047311,
8.282800. 1.000000, 0.052488,
8.296160, 1.000000, 0.057082.
8.309519, 1.000000. 0.061233,
8.322879, 1.000000, 0.065029,

126

8.336239, 1.000000, 0.068532.
8.349599, 1.000000, 0.071789,
8.362959, 1.000000, 0.074834,
8.376319, 1.000000, 0.077693,
8.389679, 1.000000, 0.080387.
8.403039, 1.000000, 0.082935,
8.416399, 1.000000, 0.085349,
8.429759, 1.000000, 0.087643,
8.443119, 1.000000, 0.089826,
8.456479, 1.000000, 0.091906,
8.469838, 1.000000, 0.093892,
8.483198, 1.000000, 0.095790,
8.496558, 1.000000, 0.097605,
8.509918, 1.000000, 0.099343,
8.523278, 1.000000, 0.101008,
8.536638, 1.000000, 0.102604,
8.549998, 1.000000, 0.104136,
3.563358, 1.000000, 0.105605,
8.576718, 1.000000, 0.107016,
8.590078, 1.000000, 0.108370,
8.603438, 1.000000, 0.109671,
8.616798, 1.000000, 0.110921,
8.630158, 1.000000, 0.112121,
8.643517, 1.000000, 0.113275,
8.656877, 1.000000, 0.114382,
8.670237, 1.000000, 0.115447,
8.683597, 1.000000, 0.116468,
8.696957, 1.000000, 0.117450,
8.710317, 1.000000, 0.118391,
8.723677, 1.000000, 0.119295,
8.737037, 1.000000, 0.120162,
8.750397, 1.000000, 0.120993,
8.763757, 1.000000, 0.121790,
8.777117, 1.000000, 0.122553,
8.790477, 1.000000, 0.123283,
8.803836, 1.000000, 0.123982,
8.817196, 1.000000, 0.124649,
8.830556, 1.000000, 0.125287,
8.843916, 1.000000, 0.125895,
8.857276, 1.000000, 0.126474,
8.870636, 1.000000, 0.127026,
8.883996, 1.000000, 0.127551,
8.897356, 1.000000, 0.128049,
8.910716, 1.000000, 0.128521,
8.924076, 1.000000, 0.128968,
8.937436, 1.000000, 0.129391,
8.950796, 1.000000, 0.129789,
8.964156, 1.000000, 0.130163,
8.977515, 1.000000, 0.130514,
8.990875, 1.000000, 0.130843,
9.004235, 1.000000, 0.131150,
9.017595, 1.000000, 0.131434,
9.030955, 1.000000, 0.131698.
9.044315, 1.000000, 0.131941,
9.057675, 1.000000, 0.132163,
9.071035, 1.000000, 0.132365,
9.084395, 1.000000, 0.132548,
9.097755, 1.000000, 0.132711,
9.111115, 1.000000, 0.132855,
9.124475, 1.000000, 0.132981.
9.137834, 1.000000, 0.133089,
9.151194, 1.000000, 0.133179,
9.164554, 1.000000, 0.133251,
9.177914, 1.000000, 0.133306.
9.191274, 1.000000, 0.133344,
9.204634, 1.000000, 0.133365,

127

9.217994, 1.000000. 0.133370.
9.231354, 1.000000, 0.133359.
9.244714, 1.000000, 0.133332.
9.258074, 1.000000. 0.133290.
9.271434, 1.000000. 0.133232.
9.284794, 1.000000. 0.133159.
9.298154. 1.000000. 0.133072.
9.311513, 1.000000, 0.132969.
9.324873, 1.000000, 0.132853.
9.338233, 1.000000, 0.132723.
9.351593, 1.000000, 0.132578.
9.364953, 1.000000, 0.132420.
9.378313, 1.000000, 0.132249,
9.391673, 1.000000, 0.132064.
9.405033, 1.000000, 0.131866,
9.418393, 1.000000, 0.131656,
9.431753, 1.000000, 0.131433,
9.445113, 1.000000, 0.131197,
9.458473, 1.000000, 0.130950,
9.471832, 1.000000, 0.130690,
9.485192, 1.000000, 0.130418.
9.498552, 1.000000, 0.130135.
9.511912, 1.000000, 0.129840
9.525272, 1.000000. 0.129534.
9.538632, 1.000000, 0.129216,
9.551992, 1.000000, 0.128888.
9.565352, 1.000000, 0.128549.
9.578712. 1.000000, 0.128199.
9.592072, 1.000000, 0.127838.
9.605432, 1.000000, 0. 127467.
9.618792, 1.000000, 0.127086,
9.632152, 1.000000, 0.126694,
9.645511, 1.000000, 0.126293,
9.658871, 1.000000, 0.125881.
9.672231, 1.000000, 0.125460,
9.685591, 1.000000, 0.125030,
9.698951, 1.000000, 0.124590,
9.712311, 1.000000. 0.124140.
9.725671, 1.000000, 0.123682.
9.739031, 1.000000, 0.123214,
9.752391, 1.000000, 0.122737.
9.765751, 1.000000 0.122252.
9.779111, 1.000000. 0.121758.
9.792471, 1.000000, 0.121255.
9.805830, 1.000000, 0.120744.
9.819190, 1.000000, 0.120224.
9.832550, 1.000000, 0.119696.
9.845910. 1.000000, 0.119160.
9.859270, 1.000000. 0.118615,
9.872630, 1.000000. 0.118063,
9.885990, 1.000000, 0.117503.
9.899350, 1.000000, 0.116935.
9.912710, 1.000000, 0.116359.
9.926070, 1.000000, 0.115776,
9.939430, 1.000000, 0.115186.
9.952790, 1.000000 0.114587.
9.966149, 1.000000, 0.113982.
9.979509, 1.000000, 0.113369.
9.992869, 1.000000, 0.112749
10.006229. 1.000000. 0.112122.
10.019589, 1.000000. 0.111488.
10.032949, 0.999985. 0.110849.
10.046309, 0.999941, 0.110205,
10.059669, 0.999867. 0.109558.
10.073029, 0.999764, 0.108907,
10.086389, 0.999632. 0. 108252.

12FI

10.099749. 0.999469. 0.107593.
10.113109 0.999278, 0.106931.
10.126469, 0.999057, 0.106264.
10.139828. 0.998806, 0.105594,
10.153188, 0.998526, 0.104920,
10.166548, 0.998216, 0.104242,
10.179908. 0.997877, 0.103560,
10.193268, 0.997509, 0.102875,
10.206628, 0.997111, 0.102186,
10.219988, 0.996683, 0.101492,
10.233348, 0.996226, 0.100796,
10.246708, 0.995739, 0.100095,
10.260068, 0.995223, 0.099390,
10.273428, 0.994677, 0.098682,
10.286788, 0.994102, 0.097969,
10.300147, 0.993497, 0.097253,
10.313507, 0.992863, 0.096533,
10.326867, 0.992199, 0.095809,
10.340227, 0.991505, 0.095080,
10.353587, 0.990782, 0.094348,

10.366947, 0.990029, 0.093612,
10.380307, 0.989247, 0.092872,
10.393667, 0.988435, 0.092127,
10.407027, 0.987593, 0.091379,
10.420387, 0.986721, 0.090626,
10.433747, 0.985820, 0.089869,
10.447107, 0.984890, 0.089108,
10.460467, 0.983929, 0.088342,
10.473826, 0.982939, 0.087572,
10.487186, 0.981919, 0.086798,
10.500546, 0.980870, 0.086019,
10.513906, 0.979790, 0.085236,
10.527266, 0.978681, 0.084448,
10.540626, 0.977542, 0.083655,
10.553986, 0.976373, 0.082858,
10.567346, 0.975175, 0.082056,
10.580706, 0.973947, 0.081249,
10.594066, 0.972688, 0.080437,
10.607426, 0.971400, 0.079621,
10.620786, 0.970082, 0.078799,
10.634145, 0.968734, 0.077972,
10.647505, 0.967356, 0.077140,
10.660865, 0.965948, 0.076303,
10.674225, 0.964511, 0.075461,
10.687585, 0.963043, 0.074613,
10.700945, 0.961545, 0.073760,
10.714305, 0.960017, 0.072901,
10.727665, 0.958459, 0.072036,
10.741025, 0.956871, 0.071166,
10.754385, 0.955253, 0.070290,
10.767745, 0.953605, 0.069408,
10.781105, 0.951926, 0.068520,
10.794465, 0.950218, 0.067626,

10.807824, 0.948479, 0.066726,
10.821184, 0.946710, 0.065820,
10.834544, C.944910, 0.064907,
10.847904, 0.943081. 0.063988,
10.861264, 0.941221, 0.063062,
10.874624. 0.939330, 0.062129,
10.887984, 0.937409, 0.061190,
10.901344, 0.935458, 0.060244,
10.914704. 0.933477, 0.059290,
10.928064, 0.931465, 0.058330,
10.941424. 0.929422, 0.057362,
10.954784, 0.927349, 0.056387,
10.968143, 0.925245, 0.055405,

129

10.981503, 0.923111. 0.054415,
10.994863, 0.920946. 0.053417.
11.008223, 0.918751, 0.052412.
11.021583, 0.916525, 0.051398.
11.034943, 0.914268, 0.050376,
11.048303. 0.911980. 0.049346.
11.061663, 0.909662, 0.048308,
11.075023, 0.907312. 0.047261.
11.088383, 0.904932, 0.046206.
11.101743, 0.902521. 0.045141,
11.115103, 0.900079, 0.044068.
11.128463, 0.897606, 0.042986,
11.141822, 0.895102, 0.041894.
11.155182, 0.892567, 0.040793.
11.168542, 0.890000, 0.039683.
11.181902, 0.887403, 0.038563,
11.195262, 0.884774, 0.037433.
11.208622, 0.882115, 0.036293.
11.221982, 0.879424, 0.035143,
11.235342, 0.876701, 0.033983,
11.248702, 0.873948, 0.032812.
11.262062, 0.871162, 0.031630.
11.275422, 0.868346, 0.030438,
11.288782, 0.865498, 0.029234,
11.302141, 0.862618, 0.028020,
11.315501, 0.859707, 0.026794,
11.328861, 0.856764, 0.025556.
11.342221, 0.853790. 0.024307.
11.355581, 0.850784, 0.023046,
11.368941, 0.847746, 0.021773.
11.382301, 0.844676, 0.020488,
11.395661, 0.841575, 0.019190,
11.409021, 0.838441, 0.017879.
11.422381, 0.835276, 0.016555,
11.435741, 0.832078. 0.015219,
11.449101, 0.828849, 0.013869,
11.462461, 0.825587, 0.012506,
11.475820, 0.822293, 0.011129,
11.489180, 0.818967, 0.009738,
11.502540, 0.815609. 0.008332.
11.515900, 0.812218, 0.006913.
11.529260. 0.808795, 0.005479,
11.542620, 0.805339, 0.004030S

SINPUT ITEM " CURDIST"',P0INTSI=250,P0INTS=46,
DISTYP="TANH", SPACE= .05,RELATIV="NO",COREOUT=9S

$INPUT ITEM = "SCALE",POINTS=46,SCALE=1.1,-1.COREOUT=8S
SINPUT ITEM = "CURRENT",COREIN-10,POINTS=140S
SrNPUT ITEM = "rNSERT".C0REIN=8,P0INTSr=46,START=68,PINTS=L,'J.

COREOUT=7S
SINPUT ITEM = "CURRENTK.COREIN-10,POINTS=140S
SINPUT ITEM = rINSERT",CREIN=9,P0INrSI=46,START=68,P0IN.TS=I40.

COREOUT=6S
SINPUT ITEM = 'CURRENT",POINTS=250,

VALUES =9.428000, 1.700000, 0.000000.
9.436501, 1.700000. 0.015514,
9.445002, 1.700000, 0.021676,
9.453503, 1.700000. 0.026293.
9.462004, 1.700000. 0.030104,
9.470505, 1.700000. 0.033398.
9.479006. 1.700000. 0.036322.
9.487507. 1.700000. 0.038963.
9.496008, 1.700000. 0.041378,
9.504509, 1.700000. 0.043608,
0.513010, 1.700000. 0.045680,
9.521511, 1.700000. 0.047617.
9.530012. 1.700000. 0.049437.

130

9.538513. 1.700000. 0.051151.
9.547014. 1.700000. 0.052772.
9.555515. 1.700000. 0.054308
9.564016. 1.700000. 0.055768.
9.572517, 1.700000, 0.057157
9.581018, 1.700000, 0.058480,
9.589519, 1.700000, 0.059744.
9.598020, 1.700000, 0.060952,
9.606521, 1.700000, 0.062107.
9.615022, 1.700000, 0.063212,
9.623523, 1.700000, 0.064272,
9.632024, 1.700000, 0.065288,
9.640525, 1.700000, 0.066262,
9.649026, 1.700000, 0.067197,
9.657527, 1.700000, 0.068095,
9.666028, 1.700000, 0.068957,
9.674529, 1.700000, 0.069785,
9.683030, 1.700000, 0.070580,
9.691531, 1.700000, 0.071344,
9.700032, 1.700000, 0.072077,
9.708533, 1.700000, 0.072782,
9.717034, 1.700000, 0.073459,
9.725535, 1.700000, 0.074110,
9.734036, 1.700000, 0.074734.
9.742537, 1.700000, 0.075333,
9.751038, 1.700000, 0.075908,
9.759539, 1.700000, 0.076460,
9.768040, 1.700000, 0.076989,
9.776541, 1.700000, 0.077496,
9.785042, 1.700000, 0.077981,
9.793543, 1.700000, 0.078446,
9.802044, 1.700000, 0.078890,
9.810545, 1.700000, 0.079315,
9.819046, 1.700000, 0.079721,
9.827547, 1.700000, 0.080108.
9.836048, 1.700000. 0.080477,
9.844549, 1.700000, 0.080828,
9.853050, 1.700000, 0.081161,
9.861551, 1.700000, 0.081478,
9.870052, 1.700000, 0.081779,
9.878553, 1.700000, 0.082063.
9.887054, 1.700000, 0.082332.
9.895555. 1.700000. 0.082585.
9.904056. 1.700000, 0.082824.
9.912557, 1.700000, 0.083047,
9.921058, 1.700000, 0.083256.
9.929559, 1.700000, 0.083451,
9.938060, 1.700000, 0.083633,
9.946561, 1.700000, 0.083800,
9.955062, 1.700000, 0.083955,
9.963563. 1.700000, 0.084096,
9.972064, 1.700000, 0.084225.
9.980565, 1.700000, 0.084341,
9.989066, 1.700000, 0.084445,
9.997567, 1.700000, 0.084537,
10.006068, 1.700000, 0.084617.
10.014569, 1.700000. 0.084685.
10.023070, 1.700000, 0.084742,
10.031571, 1.700000. 0.084788,
10.040072, 1.700000, 0.084823.
10.048573, 1.700000, 0.084847,
10.057074, 1.700000, 0.084861.
10.065575, 1.700000 0.084864,
10.074076. !.700000. 0.084857.
10.082577, 1.700000, 0.084840,
10.091078, 1.700000, 0.084813,

131

10.099579. 1.700000, 0.084776.
10.108080, 1.700000. 0.084730.
10.116581, 1.700000, 0.084674,
10.125082, 1.700000, 0.084609.
10.133583, 1.700000, 0.084535.
10.142084, 1.700000. 0.084452.
10.150585, 1.700000, 0.084360.
10.159086. 1.700000, 0.084260.
10.167587, 1.700000, 0.084151,
10.176088, 1.700000. 0.084033.
10.184589, 1.700000, 0.083907,
10.193090, 1.700000, 0.083774,
10.201591, 1.700000, 0.083632.
10.210092, 1.700000, 0.083482,
10.218593, 1.700000, 0.083324,
10.227094, 1.700000, 0.083159,
10.235595, 1.700000, 0.082986,
10.244096, 1.700000, 0.082806,
10.252597, 1.700000, 0.082618.
10.261098, 1.700000, 0.082423,
10.269599, 1.700000, 0.082221,
10.278100, 1.700000, 0.082012.
10.286601, 1.700000, 0.081796,
10.295102, 1.700000, 0.081574,
10.303603, 1.700000, 0.081344,
10.312104, 1.700000, 0.081108,
10.320605, 1.700000, 0.080865,
10.329106, 1.700000, 0.080616,
10.337607, 1.700000, 0.080361,
10.346108, 1.700000, 0.080099,
10.354609, 1.700000, 0.079831,
10.363110, 1.700000, 0.079557,
10.371611, 1.700000, 0.079277,
10.380112, 1.700000, 0.078991,
10.388613, 1.700000, 0.078699,
10.397114, 1.700000, 0.078402,
10.405615, 1.700000, 0.078099,
10.414116, 1.700000. 0.077790,
10.422617, 1.700000, 0.077475,
10.431118, 1.700000, 0.077155,
10.439619, 1.700000, 0.076830,
10.448120. 1.700000. 0.076499,
10.456621, 1.700000, 0.076163,
10.465122, 1.700000, 0.075822,
10.473623, 1.700000, 0.075476,
10.482124, 1.700000, 0.075124.
10.490625, 1.700000, 0.074768,
10.499126, 1.700000, 0.074407,
10.507627, 1.700000, 0.074040,
10.516128, 1.700000, 0.073669,
10.524629, 1.700000, 0.073293,
10.533130, 1.700000, 0.072913.
10.541631, 1.700000, 0.072527.
10.550132, 1.700000, 0.072137,
10.558633, 1.700000, 0.071743,
10.567134, 1.700000, 0.071344,
10.575635, 1.700000. 0.070941.
10.584136, 1.700000, 0.070533.
10.592637, 1.700000. 0.070121,
10.601138, 1.700000. 0.069704.
10.609639. 1.700000, 0.069283,
10.618140, 1.700000, 0.068858.
10.626641, 1.700000, 0.068429.
10.635142, 1.700000. 0.067996.
10.643643. 1.700000, 0.067559,
10.652144, 1.700000. 0.067117,

132

10.660645. 1.700000. 0.066672.
10.669146, 1.700000, 0.066223.
10.677647, 1.700000. 0.065769,
10.686148, 1.700000, 0.065312,
10.694649, 1.700000, 0.064851.
10.703150, 1.700000, 0.064386.
10.711651, 1.700000, 0.063918,
10.720152, 1.700000, 0.063445,
10.728653, 1.700000, 0.062969,
10.737154, 1.700000, 0.062489,
10.745655, 1.700000, 0.062006,
10.754156, 1.700000, 0.061519,
10.762657, 1.700000, 0.061028.
10.771158, 1.700000, 0.060534,
10.779659, 1.700000, 0.060037,
10.788160, 1.700000, 0.059535,
10.796661, 1.700000, 0.059031,
10.805162, 1.700000, 0.058523,
10.813663, 1.700000, 0.053011,
10.822164, 1.700000, 0.057496,
10.830665, 1.700000, 0.056978.
10.839166, 1.700000, 0.056456,
10.847667, 1.700000, 0.055932,
10.856168, 1.700000, 0.055403,
10.864669, 1.700000, 0.054872.
10.873170, 1.700000, 0.054337.
10.881671, 1.700000, 0.053799,
10.890172, 1.700000, 0.053258,
10.898673, 1.700000, 0.052713,
10.907174, 1.700000, 0.052165,
10.915675, 1.700000, 0.051614,
10.924176, 1.700000, 0.051060,
10.932677, 1.700000, 0.050503,
10.941178, 1.700000, 0.049943,
10.949679, 1.700000, 0.049379,
10.958180, 1.700000, 0.048813,
10.966681, 1.700000, 0.048243,
10.975182, 1.700000, 0.047670,
10.983683, 1.700000, 0.047095,
10.992184, 1.700000, 0.046516,
11.000685, 1.700000, 0.045934,
11.009186, 1.700000, 0.045349,
11.017687, 1.700000, 0.044760,
11.026188, 1.700000, 0.044169,
11.034689, 1.700000, 0.043575,
11.043190, 1.700000, 0.042978,
11.051691, 1.700000, 0.042378,
11.060192, 1.700000, 0.041774.
11.068693. 1.700000. 0.041168,
11.077194, 1.700000, 0.040559,
11.085695, 1.700000, 0.039946,
11.094196, 1.700000, 0.039331,
11.102697, 1.700000, 0.038713,
11.111198, 1.700000, 0.038091,
11.119699, 1.700000, 0.037467,
11.128200, 1.700000, 0.036840,
11.136701, 1.700000, 0.036209,
11.145202, 1.700000, 0.035576,
11.153703, 1.700000, 0.034939.
11.162204. 1.700000, 0.034300,
11.170705, 1.700000, 0.033657.
11.179206, 1.700000, 0.033011,
11.187707, 1.700000, 0.032363,
11.196208, 1.700000, 0.031711,
11.204709, 1.700000, 0.031056,
11.213210, 1.700000, 0.030398,

133

11.221711. 1.700000. 0.029737.
11.230212. 1.700000. 0.029073.
11.238713. 1.700000, 0.028406.
11.247214, 1.700000. 0.027736,
11.255715. 1.700000. 0.027062.
11.264216. 1.700000. 0.026386.
11.272717. 1.700000. 0.025706,
11.281218, 1.700000, 0.025023,
11.289719, 1.700000, 0.024337,
11.298220, 1.700000, 0.023648.
11.306721, 1.700000, 0.022955,
11.315222, 1.700000, 0.022260,
11.323723, 1.700000, 0.021561.
11.332224, 1.700000, 0.020858,
11.340725, 1.700000, 0.020153,
11.349226. 1.700000, 0.019444,
11.357727, 1.700000, 0.018732,
11.366228, 1.700000, 0.018016.
11.374729, 1.700000, 0.017298,
11.383230, 1.700000, 0.016575,
11.391.731. 1.700000, 0.015850,
11.400232, 1.700000, 0.015121.
11.408733. 1.700000, 0.014388.
11.417234, 1.700000, 0.013652,
11.425735, 1.700000, 0.012913.
11.434236, 1.700000, 0.012170,
11.442737, 1.700000, 0.011423,
11.451238, 1.700000, 0.010673,
11.459739, 1.700000, 0.009920,
11.468240, 1.700000, 0.009162,
11.476741, 1.700000, 0.008401,
11.485242, 1.700000, 0.007637,
11.493743, 1.700000, 0.006868,
11.502244. 1.700000, 0.006096,
11.510745, 1.700000, 0.005321.
11.519246, 1.700000, 0.004541,
11.527747, 1.700000, 0.003757,
11.536248, 1.700000, 0.002970.
11.544749. 1.700000, 0.002179S

SINPUT ITEM "CURDIST",POINTSI=25O,POINTS=46,
DISTYP="TA;NH",SPACE=.0318,RELATIV="NO',COREOUT=3S

SINPUT ITEM = "SCALE".POINTS=46,SCALE=1.1.-1,COREOUT=5S
SINPUT ITEM = "LINE", RI = 14, R2 = 15, POINTS = -11,

DISTYP="T.ANH",SPACE=-1,RELATIV="NO",COREOUT=2 S
SINPUT ITEM=BOUNCUTR".COREIN=3,POINTS=46S
SINPUT ITEM = "BOUNCUR",COREIN=2,POINTS=46$
SINPUT ITEM = "BLEND",POINTS-46,CURVES=2,COREOUT=1$
SINPUT ITEM = "BOUNCUR",COREIN=9,POINTS=46S
S INPUT ITEM = "BOUNCUR",COREIN=3,POINTS=46S
SINPUT ITEM = "BLEND",POINTS=46,CURVES=15S
SINPUT ITEM = 'INSERT",C0REIN=1,P0INiSI=46,2.START=1,15,P0INTS=46,16,

COR EOUT=4S
SINPUT ITEM - 'BOUNCUR",COREIN=5,POINTS=46$
SINPUT ITEM = "BOUNCUR",COREIN=2,POINTS=46S
SINPUT ITEM ="BLEND",POINTS=46,CURVES=2,COREOUT=1$
SINPUT ITEM = "BOUNCUR",CORErN=8,POINTS=46$
SINPUT ITEM = 'BOUNCUR",COREIN=5,POINTS=46$
SINPUT ITEM = "BLEND",POINTS=46,CURVES=15S
SINPUT ITEM = "INSERT",COREIN=1,POINTSI=46,2,START=1,15,POINTS=46,16.

COREOL'T=5S
SINPUT ITEM - "BOUNCUR",COREIN=6,POINTS=140S
SINPUT ITEM - 'BOUNCUR",COREIN=7,POINTS=140S
SINPUT ITEM = "R0TATE'",CURPTS=140,AkNGPTS=10,ANGLE=-45,45.

DISTANG= "BOTH" ,SPACAkNG=0. 05 , 0.05 . AXCOS=. 0, 0. NORCOS=O,. 1.
F ILEOUT IS

SINPUT ITEM = "BOUNCUR",COREIN=6,POINTS=140S

134

SINPLT ITEM = "BOUNCUR".COREIN=7,POINTS=140S
SINPUT ITEM = "ROTATE',CURPTS'140,ANGPTS=1O,ANGLE=45.135,

DISTANG='BOTH", SPACANG=0. 05, 0. 05, AXCOS=1, 0, 0, NORCOS=0 1, 0,
RMIN=-100.-100.-I00. RMAX=100,100,100. FILEOUT=2S

SINPUT ITEM = "BOUNCUR",COREIN=6,POINTS=140S
SINPUT ITEM = "BOUNCCR",COREIN=7,POINTS=14OS
$INPUT ITEM = "ROTATE",CURPTS-14O,ANGPTS=1O,ANGLE=135,225.

* DISTANG="BOTH",SPACANG=0.05,O.O5,AXCOS'=1,0,0,NORCOSSO,1.0,
RM4IN=-I00,-I00.-100. RMAX=100,100,100, FILEOUT=3S

SINPUT ITEM = "BOUNCUR",COREIN=6,POINTS=140S
SINPL'T ITEM = 'BOUNCUR",COREIN-7,POINTS=140$

- SINPUT ITEM = 'ROTATE"CURPTSL14O,ANGPTS=10,ANGLE=225,315,
DISTA.NG="BOTH", SPACANG=0. 05,0. 05 ,AXCOS=, 0, 0, NORCOS=0, 1,0,
RMIN=-100,-100,-l00, RM=100,100,100, FILEOUT=4$

$INPUJT ITEM = "TRANkS",C0REIN-5,POINTS---46,16.
COSINES=1,0.Q, 0,.707,.707, 0,-.707,.707, FILEOUT=5S

SINPUT ITEM = "TRANS",COREIN=4,POINTS-46,16,
COSINES=1,0,0, 0- 707- 707, 0,-.707..707, FILEOUT=6S

$INPUT ITEM = "TR.ANS",CRETN=',POINTS=46.16,
C0SINESI1,0,0, 0-.707,-.707,0-.707,707, FILEOUT-7S

SINPUT ITEM = "TRANS",COREIN=4,POINTS=46,16,
COSINES=I,0,0, 0,.707,-.707, 0,.707..707, FILEOUT=8S

SINPUT ITEM = "TR.ANS",COREIN=5,PQINTS=46,16,
C0SINES=1,0.0, L,-. 7 07,-. 707,0,.7 07,-.7 07, FILEOUT=9S

$INPUT ITEM = "TRANS",CGREIN=4,POINTS=46,16,
COSINES=1,0O0, 0.-.707,--.707, 0,.707,-.707, FILEOUT=1OS

SINPUT ITEM = "TRANS",COREIN=5,PINTS='46,16.
C0SINES=I.0,0, 0,-.707,.707, 0,-.707,-.707, FILEOUT=33S

$INPUT ITEM = "TRANS',COREIV-"=4,P0INTS=46,16,
C0SINES=1,O,0, 0,-.7079.707, 0,-.707,-.707, FILEOUT-35S

SINPUT ITEM = "LINE", RI = 14, R2 = 6, POINTS = -12 $
SINPUT ITEM = 'CURDIST",POINTSI=9,DISTYP="TANH",RELATIV="NO",

SPACE=0. 1,POINTS=9,COREOUT=1S
SINPUT ITEM = "TRANS",COREIN=l,POINTS=9,
COSINES=1,O,0, 0_.707,.707, 0,-.707,.707, FILEOUT=34$

SINPUT ITEM = "TRANS",COREIN=l,POINTS=9,
COSINES=1.0,0, 0,.707.-.707, 0,.707,.707, FILEOUT=14S

SINPUT ITEM = "TRANS",COREIN=1,POINTS=9,
C0SINES=1.0,0, 0,-.707,-.7079 0,.707,-.707, FILEOUT=15$

$INPUT ITEM = "TRANS5",COREIN=1,POINTS=9,
COSTNES=1,0,0, 0,-.707,.707, 0,-.707,-.707, FILEOUT=16S

SINPT T ITEM = "LINE". RI = 15, R2 = 8, POINTS = -13 $
SINPUT ITEM = 'CURDIST",POINTSI=9,DISTYP="TANH",RELATIV="NO",

SPACE=O. I.POINTS=9,COREOUT1S$
SINPUT ITEM = "TRANS",COREIN=1.POINTS=9,

COSINES=1,O,0, 0-.707,707, 0,-.707,.707, FILEOUT=17S
SINPUT ITEM = "TRANS",COREIN1l,POINTS=9,

COSINES=1,O,0, 0..707,-.707, 0,.707,.707. FILEOUT=18S
SINPUT ITEM = "TRANS",COREIN=1,POINTS=9,

COSINES=1.O,0, 0.-.707,-.707, 0,.707.-.707, FILEOUT=19S
SINPUT ITEM = "TRANS",COREIN=1,POINTS=9.
C0SINES=1.0.O, 0,-.70)7,.707, 0,-.707,-.707, FILEOUT=20S

SINPUT ITEM = 'CONICUR",CTIRPTS=60,TYPE="CIRCLE",
RADIUS=60. 0,ANGLE=9O.0. 0. 0$

SINPUT ITEM = 'TRANS' PQINTS=60,ORIGIN=3.3333,0,0,
COSINES=-1,O,0, 0.1,0, 0,0,-I, COREOUT=IS

SINPUT ITEM = 'LINE". RI = 6, R2 = 7, POINTS = -4 S
$INPUT ITEM = "INSERT",COREIN=1,POINTSI=60,START=9,POINTS=68S
SINPUT ITEM = "CURDIST", POINTSI=68,DISTYP="TANH",RELATIV="NO"t.

POINTS=68. SPA-CE=0. 2S
SINPUT ITEM = 'SWITCH" ,POINTS-68,REORDER-"REVERSE1",COREOUT=1S
SINPUT ITEM - 'LINE", RI- 6, R2 - 8. POINTS = -5,

DISTYP-"BOTH",RELATIV-"NO",SPACE--2.-2,COREOUT-2S
SINPUT ITEM - 'LINE". RI -8, R2 - 9, POINTS = -6 S
SINPUT ITEM = 'CURDIST",POINTSI-28,DISTYP-"TANH",RELATIV="NO",

SPACE-0.2, POINTS=28 ,COREOUT= 11S

135

SINPUT ITEM = "CURRENT",COREIN=1,POINTS=68S
SINPUT ITEM = "INSERT'.COREIN=2,POINTSI=46,START-68.POINTS=i'13S
SINPUT ITEM = "INSERT",COREIN=11,POINTSI=28,START=113.POINTSi4o,

COREOUT=11iS
SINPUT ITEM -"BOUNCUR",POINTS=140S
SINPUT ITEM ="ROTATE", CURPTS= 140..ANGPTS= 10,ANGLE=- 45, 45,

DISTAiNG="BOTH", SPACANG=0. 05 ,0. 05 XxCOS=i. 0,0, NORCOS=0. 1.0.
RMIN-100,-100.-IOO. RMAX=i00,IOO,100, VIEW=120.10.5000.
FILEOUT=21 S

SINPUT ITEM - "LINE", RI = 10, R2 = 9. POINTS = -7 S
SINPEJT ITEM = "CURDIST',POINTSI=9,DlSTYP="TANH",RELATIV="NO",

POINTS=9,SPACE=0.l1,CORE0UT=12S
SINPUT ITEM -'LINE", RI = 5, R2 = 10, POINTS = -8 S
SINPL'T ITEM ' INSERT' ,COREINi12, POINTSI=9, START16 , POINTS=24,

COREOUT 14$
SINPUT ITEM ="BOUNCUR",POINTS=24$
SINPUT ITEM = "ROTATE",CURPTS=24,ANGPTS=10,ANGLE=-45,45.

DISTANG="BOTH" ,SPACANG=O. 05 ,0. 05 ,AXCOS=i, 0, 0,NORCOS=0 1, 0,
RMIN-i100,-i00,-i0O, RMAX=i00,100,i00,FILEOUT=22 S

SINPUT ITEM ' LINE", RI = 11, R2 = 12, POINTS = -9 S
SINPUT ITEM ="CURDIST",POINTSI=9,DISTYP="TANH",RELATIV="NO",

P0INTS=9,SPACE-0. I ,COREOUT= 13$
SINPUT ITEM = "LINE", RI= 13, R2 = 11, POINTS = -10 S
SINPUT ITEM - "INSERT",COREIN=13,POINTSI=9,START=16,POINTS=24.

COREOUT=15$
SINPUT ITEM = "BOUNCUR",POINTS=24S
$INPUT ITEM = "ROTATE",CURPTS=24,ANqGPTS=10,ANGLE=-45,45,

DISTANG="BOTH", SPACANG=0. 05 ,0. 05 , AXCOS=-I, 0, 0,NORCOS=O, 1, 0.
RMIN=-1OO.-i00,-100, RMAX100,i0,100 ,FILEOUT=23 S

SINPUT ITEM = "BOUNCUR",COREIN=].1,POINTS=140S
$INPUT ITEM = "ROTATE",CURPTS'=140,ANGPTS=1O,ANGLE=45, 135,
DISTANG="BOTH" ,SPACANG=0. 05 ,0. 05 ,AXCOS=1, 0, 0,NORCOS=0, 1,0.
RMIN=-100,-100,-100, RMAX=100,100,100, FILEOUT-24 S

SINPUT ITEM = "BOUNCUR",COREIN=14,POINTS=24S
SINPUT ITEM = 'ROTATE",CURPTS=24,ANGPTS=10,ANGLE=45, 135.
DISTANG="BOTH", SPACAkNG=0. 05 ,0. 05 ,AXCOS=1,0, 0, NORCOS=O, 1, 0.
RMIN=-100,-i00,-i00, RMAX=100,i00,i00, FILEOUT=25 S

SINPUT ITEM = "BOUNCUR",COREIN=15,POINTS-24$
SINPUT ITEM = "ROTATE",CURPTS=24,ANGPTS=10,ANGLE=45, 135.
DISTANG="BOTH",SFACANG=0.05,0.05,AXCOS=-I,0,0,NORCOS=0, 1,0,
RMI*;=-iOO,-100,-100, RMAX=100,100,100, FILEOUT=26 S

SINPUT rTEM = 'BOUNCUR",COREIN=llPOINTS=140S
SINPLT ITEM = "ROTATE", lCURFTS=140,AN ,GPTS=1O,ANGLE= 135, 225,

DISTANG="BOTH", SPACA.NG=0. 05 ,0.05 ,AXCOS=1, 0,0, NORCOS=0 1, 0.
RMlN=-100,-100,-100, RMAX=100, 100, 100, FILEOUT=27 S

SINPUT ITEM = "BOUNCUR",COREIN=14,POINTS=24S
SINPUT ITEM = "ROTATE",CURFTS=24,ANGPTS=10,AN4GLE=135,225,
DISTANG="BOTH" ,SPACANG=0. 05,0. 05 ,AXCOS=i, 0,0, NORCOS=0, 1,0.
RMIN=-i00,-i00,-i00, RMAX=i00,i00,100, FILEOUT=28 S

SINPUT ITEM = "BOtNCUR,CREIN=15,P0INTS-24S
SINPUT ITEM = "ROTATE",CURPTS=24,ANGPTS=10,ANGLE=135.225,
DISTA NG="BOTH" ,SPACANG=0. 05, 0. 05 , .XCOS=-I,0,0, NORCCS=IJ ,1, 0.
RMIN=-100,-i00,-i00, RMAX=i00,i00,100, FILEOUT=29 S

SINPUT ITEM = "BOUNCUR",COREIN=11,POINTS=140S
SINPUT ITEM = "ROTATE",CURPTS=140,ANiGPTS=10,ANGLE=225,315.
DISTANG-"BOTH", SFACANG=0. 05 ,0. 05 , .XCOS=1, 0,0, NORCOS=0, 1,0.
RMrN=-i00,-100.-100, RMAX=100,100,100.FILEOUT=30 S

SINPLT ITEM = 'BOUNCUR",COREIN='14,POINTS=24S
SINPUT ITEM = 'ROTATE",CURPTS=24,ANGPTS=10,ANGLE=225.315,

DISTANG= BOTH , SPACANG=O. 05 ,0. 05 , AXCOS=1, 0,0. NORCOS=u . 1.0
RIIN=-100,-i00,-100, RMAX=100,100, 100, FILEOUT=31 S

SINPUT ITEM = "B0UNCUR",C0REIN-'15,P0INTS=24S
SINPUT ITEM - 'ROTATE',CURPTS=24,XiNGPTSiO0,ANGLE=225,315,
DISTANG="BOTH" ,SPACA* NG=0.05,C.05. XXCOS=- 1 .,,NORCOS='. 1,..
RMIN-i00,-100,-iOO, RMAXiOO0.i00,i00, FILEOUT=32 S

$INPUT ITEM - "COMBINE", FILEIN=1,21,22,23,14,18,34,17.8,5,

136

F! LZOUT=,)S
SNPL:T rTE>!="COMBINE".FILEIN=2.2, 25.26.34.17. 16,20,6.33.

FILEOUT=50S
SINPUT ITEM="COMBINE",FILEIN=3,27,28.29.16,20.15,19,35.9,

FILEOUT=60S
SINPUT iTEM="COMBINE",FILEIN=4.30.31,32. 15 19, 14, 18, 10.7.

FILEOLT=70S
SINPUT ITEM = "END"S

137

GRID INPUT DATA

1. $INPUT lTEM-"STORE",KSTORE="FILE",FILE-72,ITMAX=1,TOL=1.OE-06,ACCPAR=.O,

OUTER="NO", CHECK:"NO"CHECK:"NO"$

Line 1 stores the output of the field grid generation system on file 72.

The maximum number of iterations will be one (for an algebraic grid) with a

toleration parameter of 1.OE-06 and the acceleration parameter for the SOR point

iteration set to 0.0 (for the algebraic grid). No extra layer of points will be

placed outside the grid.

2. $INPUT ITEM="INITIAL",CONTYP="INITIAL",BLEND="ARC-,"ARC","LINEAR",

ALL=" YES" $

Line 2 initializes the generation system with an algebraic grid and since

the control function is also initial, only an algebraic grid will be developed.

The blending functions in x, y, (I,J) will be based on interpolated arc lengths

while, in the third dimension, z (K), the blending function will be a linear

interpolation.

3. $INPUT ITEM="BLOCK",SIZE=140,24, 10$

Line 3 sets the maximum size of the first block at 140 x 24 x 10 (Figure 76).

4. $1NPUT ITEM="FILE",START= 1,1,1,END=140,1,10,CLASS="FIX",

FILE=50, REWIND="YES"$

Line 4 reads in the body boundary (ogive-cylinnder-ogive with sting) and

fixes these 140 x 1 x 10 points.

5. $rNPUT ITEM:"FILE",START=1,24,1,END=140,24,10,CLASS="FIX",

FILE=50, REWIND="NO"$

Line 5 reads in the outer boundary (C-type outer boundary) and sets those

points as fixed.

13m

E

L
.0

4-
. U

040

1 9-

6. $INPUT ITEM="FILE",START:140,,1,1,END=1I40,24,10,CLASS:"FIX",

FILE=50,REWIND="NO"$

Line 6 reads in the back boundary and sets those points as fixed.

7. $INPUT ITEM="FILE",START=1,1,I,END=1,24,10,CLASS="FIX",

FILE=50,REWIND="NO"$

Line 7 reads in the front stagnation line boundary and sets those points as

fixed.

8. $INPUT ITEM="FILE",START=68,16,1,END=68,24,1,FILE=50,

REWIND="NO"$

9. $INPUT ITEM="FILE",START=113,16,1,END=113,24,1,FILE=50,

REWIND="NO"$

Lines 8 and 9 read in the leading and trailing edge controlling line boundary

from the fin tip to the outer boundary for the left side of Block 1.

10. $INPUT ITEM="FILE",START=68,16,10,END=68,24,10,FILE=50,

REWIND:"NO"$

11. $INPUT ITEM="FILE",START=113,16,1O,END=113,24,10,FILE=50,

REWIND="NO"$

Lines 10 and 11 read in the leading and trailing edge controlling line

Dundary for the right side of Block 1.

12. $INPUT ITEM="FILE",START=68,1,1,END=113,16,1,CLASS="FIX",

FILE=50,REWIND="NO"$

13. $INPUT ITEM="FILE",START=68,1,10,END=113,16,10,CLASS="FIX",

FILE=50,REWIND="NO"$

Lines 12 and 13 read in the fin solid boundary on the left and right side of

Block 1 and set those points to fixed.

14 . $INPUT ITEM="INTERP",BLEND="ARC","ARC",START=1,1,1,END=6824,1$

140

Line 14l interpolates, based on arc lengths, the portion of the grid from

1,1,0 to 68, 24, 1 that was not specified by the surface grid generation

system.

15. $INPUT lTEM="INTERP",BLEND="ARC","ARC",START=68,16,1,END=113,24,1$

16. $INPUT ITEM="INTERP",BLEND="ARC","ARC",START=113,1,1,END14,24,1$

17. $INPUT IT,=ITR"BED"R""R"SAT111,N=82,0

18. $INPUT ITEM="INTERP",BLEND:"ARCM ,"ARC",START=68, 16, 10,ENDJ113,24, 10$

19. $INPUJT ITEM="INTERP",BLEND="ARC","ARC",STAHT113,1,10,END=1l0,24,10$

Lines 15-19 interpolate for the rest of the unspecified grid boundaries

based on arc lengths (Figure 77).

20. $INPUT ITEM="FIX",START=68,1,1,END=113,16,1$

21. $INPUT ITEM="eIX",START68,1,10,END113,16,1O$

Lines 20 and 21 fix the points on the fin surfaces for Block 1.

22. $INPUJT ITEM:"BLQCK"1,SIZE=140,24, 10$

Line 22 sets the maximum size of the second block at 140 x 24 x 10.

23. $INPUT ITEM="FILE",START=1,1,1,END=1LI0,1,1O,CLASS="FIX",

FILE=60, REWIND=:"YES"$

24. $INPUT ITEM="FILE",STARTz1,24,1,END=14O,24,1O,CLASS:"FIX",

FILE=60, REWIND=:"NO"$

25. $INPUT ITEM="FILE",START=140, 1, 1,ENJYJLO,24,1O, CLASS="FIX",

FILE:60, REWIND="NO"$

26. $INPUT ITEM="FILE"',START=1,1,1,END= 1,24,10,CLASS="FIX"t

FILE=6O, REWIND="NO"$

27. $INPUT ITEM="FILE",START=68, 16, 1,END=68,24, 1,FILE=60,

REWIND="NO"$

28. $INPUT ITEM="FILE",START=113,16,1,END=113,24,1,FILE=60,

FEWIND="NO"$

29. $INPUT ITEM="FILE",START=68,16,10,END68,2l,10,FILE=60,

REWIND="NO"$

30. $INPUT ITEM="FILE",START:113,16,1O,END=113,24,1O,FILE=6O,

141

C-TYPE OUTER BONDARY "

(SP [ClFIED)

BACK BOUNDARY0 ... (SPECIFIED)

FIN CONTROLLINGC
I-INES 61 FIN CONTROLLING

8 NLINES

• REGIONS-i

FIN GEOMETRY

FIN GEOMETRY
(SPECIFIED)

FRONT STAGNATION LINE
BOUNDARY (SPECIFIED)

OGIVE-CYLINDER-OGIVE W/STING

z
p

Figure 77. Single Block Format (Exploded View)

142

REWIND " NO" $

31. $INPUT ITEM="FILE"t,START=68,1,1,END:113,16,1,CLASS"FIXW,

FILE=60, REWIND="NO"$

32. $INPUJT ITEM:'"FILE",START=68,1,10,END=113,16,1O,CLASS="FIX",

FILE=60,REWIND="NO"$

Lines 23-32 are analagous to lines 4-13. The boundaries of Block 2 are read

in from output files.

33. $INPUT ITEM="INTERP",BLEND="ARC","ARC",START=1,1,1,END68,2I,1$

34. $INPUJT ITEM="INTERP",BLEND="ARC","ARC",START=68,16,1,END=113,24,1$

35. $INPUT ITEM="INTERPII,BLEND="ARC",nARC",START=113,1,1,END:140,24, 1$

36. $INPUJT ITEM="INTERP",BLEND="ARC","ARC",START=1, 1, 10,END=68,2J, 10$

37. $INPUT ITEM&'INTERP",BLEND='ARC","ARC",START=68, 16, 10,END=113,2i, 10$

38. $INPUT ITEM=&INTERP",BLEND="ARC","ARC",START=113,1,10,END=140,24,10$

Lines 33-38 are analagous to lines 4-19 and interpolate the unspecified grid

boundaries for Block 2.

39. $INPUT ITEM="FIX",START=68,1,1,END=113,16,1$

40. $INPUT lTEM="FIX",START=68,1,10,END=113, 16, 10$

Lines 39 and 40 fix the points on the fin surfaces for Block 2.

41. $INPUT ITEM="BLQCK"1,SIZE=140,2$,10$

Line 41 sets the maximum size of the third block at 140 x 24 x 10.

42. $INPUT ITEM="FILE",START=1,1,1,END=14Oa1,10,CLASS="FIX",

FILE=70, REWIND="YES"$

43. $INPUT ITEM="FILE-,START=1,24,1,END=140,24,10,CLASS="FIX",

FILE=70, REWIND:"NO"$

44. $INPUT ITEM='FILE",START=140,1,1,END=140,24,10,CLASS="FIX",

FILE=70, REWIND="NO"$

45. $INPUT ITEM="FILE",START=1,1,1,END:1,24,1O,CLASS="FIX",

FILE=70, REWIND=:"NO"$

46. $INPUT ITEM="FILE",START=68,16,1,END=68,24,1,FILE=7O,

143

REWIND="N0"$

47. $INPUT ITEM="FILE",START=113,16,1,END=113,24,1,FILE=70,

REWIND=" NO" $

48. $INPUT ITEM="FILE",START=68,16,1O,END=68,24,1O,FILE=70,

REWIND="NO"$

49. $INPUJT ITEM:'"FILE",START=113,16,10,END=113,24,lOFILE=7O,

REWIND="NO"$

50. $INPUT ITEM= FILE",START=68,1,1,END=113,16,1,CLASS="FIX",

FILE=70, REWIND="NO"$

51. $INPUT ITEM="FILE",START=68,1,1O,END=113,16,1,CLASS='t FIX",

FILE=70, REWIND=1"NO"$

Lines 42-51 read in the Block 3 boundaries from output files.

52. $INPUT ITEM="INTERP",BLEND="ARC","lARC",-START=1,1,1,END=68,24,1$

53. $INPUJT ITEM="INTERP",BLEND="ARC","ARC",JSTART=68, 16,1,END=11i,24,1$

54. $INPUT ITEM:"INTERP",BLEND="ARC","ARC",START=113,1,1,END~140,24,1$

55. $INPUT ITEM="INTERP",BLEND="'ARC","ARCt ,START=1, 1, 10,END=68,24I, 1$

56. $INPUT ITM"NEPLN=ACACTR=81,~ED132,0

57. $INPUT ITEM="INTERP",BLEND="ARC"h"ARC",,START:113,1,10,END=1'40,24,1O$

Lines 52-57 interpolate the unspecified grid boundaries for Block 3.

58. $INPUT ITEM="FIX",START:68,1,1,END=113,16,1$

59. $INPUT ITEM="FIX",START=68,1,10,END~ll3,16,10$

Lines 58 and 59 fix the points on the fin surfaces for Block 3.

60. $INPUT ITEM=1'BLOCK-'SIZE14,2 1 O1$

Line 60 set the maximum size of the fourth block at 140 x 24 x 10.

61. $INPUT ITEM="FILE",START=1,1,1,END140,1,1O,CLASS="FIX",

FILE=80, REWIND=:"YES"$

62. $INPUT ITEM="FILE",START=1,24,1,END:14O,24,10,CLASS="FIX",

FILE=80,RIEWIND="NO"$

144

63. $INPUT ITEM:"FILE",START14O,1,1,END1140,211,1O,CLASS="FIX",

FILE=80, REWIND="NO"$

64. $INPUT ITEM="FILE",START=1, 1.1,END:1,21, 1O,CLASS="FIX",

FILE=80, REWIND="NO"$

65. $INPUT ITEM="FILE",START=68,16,1,END68,24,1,FILE=80,

REWIND=" NO" $

66. $INPUT ITEM="FILE",START=113,16,1,END:113,24,1,FILE=80,

REWIND=" NO" $

67. $INPUT ITEM="FILE",START=68,16,1O,END:68,24,1O,FILE=80,

REWIND="NO"$

68. $INPUT ITEM='FILE",START=113,16,1O,END=113,24,1O,FILE:80,

REWIND:" NO" $

69. $INPUT ITEM="FILE",START=68,1,1,END=113,16,1,CLASS:"FIX",

FILE=80, REWIND="NO"9$

70. $INPUT ITEI4"FfLE",START=68,1,1O,END=113,16,1O,CLASS"FEX",

FILE=8O, REWIND="NO1'$

Lines 61-7O read in the Block 4 boundaries from output files.

71. $INPUJT ITEM="INTERP",BLEND="ARC","ARC",START= 1,1,1,END=68,24,1$

72. $INPUT ITEM="INTERP",BLEND="ARC","ARC",START=68,16, 1,END:113,24, 1$

73. $INPUJT ITEM="INTERP",BLEND:"ARC","ARC",START:113,1,1,END:140,24,1$

74. $INPUT ITEM="INTERP",BLEND="ARC","ARC",START=1,1,1O,END=68,24,1O$

75. $INPUT ITEM="INTERP",BLEND="ARC","ARC",START=68,16,1O,END=113,24,1O$

76. $INPUT ITEM="INTERP",BLEND="ARC","ARC",START:113,1,1O,END=140,24,1O$

Lines 71-76 interpolate the unspecified grid boundaries for Block 4.

Lines 22-40 read in and interpolate for all of Block 2.

Lines 41-59 read in and interpolate for all of Block 3.
Lines 60-78 read in and interpolate for all of Block 4i.

77. $INPUT ITEM="FIX",ISTART:68,1,1,END=113,16,1$

78. $INPUT ITEM:"FIX",START:68,1,10,END=113,16,10$

145

Lines 77 and 78 fix the points on the fin surfaces for Block 4.

79. $INPUT ITEM="CUT",BLQCK=1,START=1,1,1,END68,24,1

IBLOCK,ISTkRT=1,1,10,IEND=68,2AI,10$

80. $INPUJT ITEM="CUT",BLOCK=1,START=68, 16,1,END=113,24,1,

IBLOCK:JJ,ISTARTz68,16,10, IEND=113,214,10$

81. $INJPUT ITEM="CUT",BLCK1,START113,1,1,END140,2I,1

lBL0CK=2,ISTART=113,1,10,IEND=140,24, 10$

Lines 79 through 81 defined the points which are common to Block 1 and Block 14.

82. $INPUT lTEM="CUT",BL0CK=1,START=1,1,10,END68,2ID10,

IBLOCK=2, ISTART= 1, 1,1, IEND=68,24,1$

.33. $INPUT ITEM="CUT",BLOCK=1,START=68,16,10,END113,24,10,

IBLOCK=2, ISTART=68, 16,1, IEND= 113,214,1$

814. $INPUT ITEM="CUT",BL0CK=2,START113,1,10,END1I0,2i,10,

IBLOCK=3,ISTART=113,1,1,IEND1J0,24,1$

Lines 82 through 814 define the points which are common to Block 1 and Block 2.

85. $INPUT ITEM="CUT",BLOCK=2,START=1,1,10,END68,24,10,

IBL0CK=3,ISTART=1,1,1,IEND=68,24,1$

86. $INPUT ITEM="CUT",BL0CK=2,START=68, 16, 10,END=113,24, 10,

IBLOCK:3,ISTART=68,16,1,IEND=113,2I,1$

87. $INPUJT ITEM="CUT",-BL0CK=3,START=113,1,10,END140,24,10,

IBLOCK=3,ISTART=113,1,1,IEND=1140,24,1$

Lines 85 through 87 define the points which are common to Block 2 and Block 3.

88. $INPUT ITEM="CUT'",BL0CK=3,START=1,1,10,END68,24,10,

IBLOCKI4, ISTART= 1,1,1, 1END=68, 24, 1$

89. $INPUT ITEM="CUT",BL0CK=3,START=68,16,10,END113,2l,10,

IBLOCKL4, ISTART=68, 16,1, IEND=113,24,1$

90. $INPUT ITEM="CUT",BL0CK=3,START113,1,10,END140,24,10,

TBLOCK=4, ISTART=113, 1,1, IEND=140, 24, 1$

Lines 88 through 90 define the points which are common to Block 3 and Block 14.

146

91. $INPUT ITEM = "END" $

Line 91 terminates input to the field grid generation system.

92. $OUTPUT ITEM z "ERROR", BLKERR="YES" $

Line 92 causes the maximum iteration error in each block to be printed at each

iteration.

93. $OUTPUT ITEM = "END" $

Line 93 terminates the print-out input.

147

z

00
00

U-

148~

/ /
* I /
* I

'I I 'I-...

1 '

'N" -*----4, / 7.
N -, /' --ft.. /

/
V

A- -, ~0
A? -- 4

1-~

- ** -z
U
0

A

I

/ ill -~

U-
A

* 0'
N

C,
s-I

I -
I Oh
I -- 4
I U-

?' I I'

I /

4-..

I
I_

149

-- -j-----f-- 1) ~ ~

Kc

15

SI iPUT I TEM = "STORE".',~STORE=" FILE". FILE= 72. !T.AX=1 TL1. 0E-)6..aCCPAfR=.li.
Q)UTER="N0". CHECK=-N.O" S

$INPUT ITEM = "INITIAL" LCONTYP="INIITIAL",BLEND="ARC", "ARC". "LINEAR".
A:LL "YES" S

SINPUT ITEM = "BLOCK", S1ZE=140,24, 10$
SINPUT ITEM = "FILE", START= 1, 1, 1. END=140, 1.10, CLASS="FIX",

FILE=5O, REWIND= "YES'S
SINPTUT ITEM -"FILE", START= 1,24, 1, END=140,24,10, CLASS="FIX",

Fl LE=50 ,REWIND="NO"S
SINPUT ITEM = "FILE", START=140, 1, 1, END=140,24,10. CLASS'"FIX",

Fl LE=5O,REWIND="NO"S
SINPUT ITEM ="FILE", START= 1, 1, 1, END= 1,24,10, CLASS="FIX",

FILE=5 , REWIND="N0"S
SINPUT ITEM ="FILE". START=68,16, 1, END=68,24, 1, FILE=5O.

REWIND="NO"$
SINPUT ITEM ="FILE", START=113,16, 1, END=113,24, 1, FILE=5O,

REWIND="NO"S
$INPUT ITEM = "FILE", START=i38,16,1O, END=68,24,1O, FILE=50,

REWIND"NO"S
$INPU'T ITEM ="FILE", START=113,16,1O, END=1l3,24,1O, FILE=50,

REW IXD-"N0 "S
SINPLIT ITEM = "FILE", START=68, 1, 1, END=113.16, 1, CLASS="1FIX",

FILE=50,REWIND"'NO"S
SINPUT ITEM ="F7LE". START=68, 1.10, END=113,16,10, CLASS="FIX",

FILE=5O,REWIND="NO"S
SINPUT ITEM = " INTERP". BLEND="A.RC", "ARC", START= 1. 1, 1, END=68.24, IS
SINPUT ITEM = " INTEPF"'. BLEND="ARC", "ARC", START=68,16, 1, ENDII13,24, 'S
SINPUT I TEM = 'INT:R?". BLEND= "ARC", "ARC", START=113, 1, 1, END=14O,24, IS
SINPUT ITEM " INTERP", BLEND=".ARC". "ARC", START= 1, 1,10, END=68,24, 10$
$INPUT ITEM = "INTERP". BLEND="ARC", "ARC", START=68,16,1O. END=113,24,1OS
$INPUT ITEM = "INTER P", BLEND="ARC", "ARC", START=113, 1,10, END=140,24.10$
SINPUT ITEM ="FIX" ,START=68,1,1 ,END-113,16,1 $
SINPUT ITEM = "FIX" ,START=68,1,10 ,END=113,16,10 $
SINPUT I TEM = "BLOCK", SEZE=140,24,1QS
$INPUT ITEM = "FILE", START= 1, 1, 1, END=140, 1,10, CLASS="FIX",

FILE=60,REWIND="YES"S
SINPUT ITEM = "FILE", START= 1,24, 1, END=140,24,1Q, CLASS="FIX",

F ILE=60. REWIND="NO"S
SINPUT ITEM = "FILE", START=140, 1, 1, END=140,24,10, CLASS="FIX",

FILE=60, REWIND="NO"S
$INPUT ITEM = "FILE", START= 1, 1, 1, END= 1,24,10, CLASS="FIX",

FILE=60,REWIND="NO"S
SINPUT ITEM = "FILE", START=68,16, 1, END=68,24, 1, FILE=6O,

REWIND= 'NO'S
SINPlUT ITEM ="FILE", STARTII13,16, I, END=113,24, 1, FILE=6O,

REWINO= XO"S
SINPLT ITEM ="FILE", START-68,16,10, END=68,24,10, FILE-60,
R EW IND- "NO" S

SINPUT ITEM = "FILE", START=113,16,10, END=113,24,10, FILE=60,
REW IND="NO"S

$INPUT ITEM = "FILE", START=68, 1, 1, END-113,16, 1, CLASS="FIX",
FILE=60,REWIND="NO"S

SINPUT ITEM = "FILE", START-68, 1,10, END=113,16,10, CLASS-"FIX",
FILE=60,REWIND="NO"S

$INPLT ITEM = " INTERP", BLEND-"ARC", "ARC", START- 1, 1, 1, END"68.24, IS
SINPUT I TEM = " INTERP", BLEND-"ARC", "ARC", START-68,16, 1, ENDI113,24, 13
SINPUT I TEM = " INTERP", BLEND="ARC", "ARC", STARTI113, 1, 1, END=140.24, 1S
SINPUT ITEM = " INTER?". BLEND="ARC", "ARC", START- 1, 1,10, END-68,24,IOS
SINPUT ITEM = " INTERP", BLEND-"ARC", "ARC", START=68,16,10, END=113,24,IOs
SINPUT ITEM = " INTERP", BLEND-"ARC", "ARC", STARTII13, 1,10, END-140,24,10S
SINPUT I TEM = "FIX" ,START=68.I, I ,END=113,16,1 $
SINPUT ITEM - "FIX" START-68,l,1O END=113,16,10$
SINPUT ITEM - "BLOCK", SIZE-140,24,1OS
$INPLUT I TEM - "FILE", START= 1, 1. 1. ENDI14O, 1,10, CLASS-"FIX",

FILE-70,REWIND-"YES"S
SINPUT ITEM -"FILE", START- 1,24, 1, END=140,24,10, CLASS-"FIX",

151

V-L-= 71), REWIND="NO" S
.,NPUT I-EM1 = ''FILE", ST.RT=140, ,1.END=I4O,24.l10. C-LASS=-FIX".
F ILE= 1-O. REWIND=" NO"S

IINPLUT ITEM = "'FILE", START= 1 , 1, END= 1.24.,10, CLASS=-F7X".
F ILE= 70, R EW IND= "NO "S

SiNP':T ITEM = "FILE". START=68,16, 1, END=68,24, I, FILE=7O,
REW IND="NO"S

SIJNPUJT ITEM = 'FILE", START=113.16. 1, END=113,24, 1, FILE=70,
R EWIND " NO 'S

TIINPL'T I-EMl "FILE", START=68,16,1O, END=68,24,1O, FILE=710,
WIN*D N

SINPUT ITEM = 'FILE", START=113,16,IO. END=113.24,IO, FILE=70.
REWIND='N0"S

SINPUT ITEM = "FILE", START=68, 1. 1, END=113,16. 1, CLASS="FIX".
FILE= 7i. REWIND="NO"'S

SINPUT ITEM = "FILE", START=68, 1,10, END=113,16,1O, CLASS="FIX".
FILE= 70.FEW IND="N0"S

SINPUT IT'EMl = "INTERP", BLEND= "ARC", "ARC", START= 1, 1, 1, END=68.24. IS
SINPUT IT EM1 = "INTERP", BLEND="ARC", "ARC", START=68,16, 1. END=113.24, IS
SINPUT ITEM = " INTERP". BLEND="ARC", "ARC", START=113. 1, 1. END=140,24. IS
SINPUT ITEM =" INTERP", BLEND="ARC", "ARC", START= 1. ,I,10. END=68. 24. 1OS
5 INPUT ITEMk " IN TE RPF". BLEND="ARC", "ARC", START=68,16,10. E.ND=113.24. 105
SINPUT ITEM = "'INTERP". BLEND="ARC", "A-RC", START=113, 1.10, END=I40.24.ios
SINPUT 17 EM1 "FIX" ,STA.RT=68,1, I END=113,16, 1 S
S INP 1:T I T EM = 'FIX" ,START=68.I,10 END=1.13,16.1O S
SINPI *T ITEM-.I = "BLOCK", SIZE=140,24.I10$
SINPLT I -E.M = "FILE", START= 1, 1, 1, END=140, 1,10. CLASS="FIX".

F I LE=80 . R EW I ND= "YES"$
SINPUT ITEM ="FILE", START= 1,24, 1, END=140,24,10, CLASS="FIX".

Fl LE=80 , EW IND="NO"S
SINPUT ITEM " 'FILE". STARThI4O, 1, 1, END=140,24,1O, CLASS="FIX",

FILE 1, R EW LND= "NO "S
SINPUT ITEM " 'FILE", START= 1, 1. 1, END= 1,24,10, CLASS="'FIX".

F ILE=80. FEW IND="NO"S
SINPUT ITEM = "FILE", STAkRT=68,16, 1, END=68,24. 1, FILE=80,

FEW IND="NO"S
SINPUT ITEM = "'FILE". START=113.16. 1, END=113,24, 1, FILE=80.

REW IND="NO"S
SINPLT ITEM = "FILE". START=68,16,1O, END=68.24,IO, FILE=80,

R EWIN=" NO "S
SINPUT ITEM = "'FILE", START=113,16,1O, END=113.24.1O, FILE=80.

P EWJIND="'NO "S
SINPU:T ITEM = 'FILE". STA.RT=68, 1, 1, END=113,16, 1, CLASS="FIX".

:LE=80, REWIND=''NO"S
S INPUT I TEM = "F ILE", START=68, 1, 10, END= 113, 16, 10, CLASS="FIX'.

F ILE=8). REWIND="NO"S
SINPIJT ITEM =" INTERP". B LEND= "ARC","ARC " START= 1, 1, 1, END=68,24, 1S
SINPUT I TEM = " INTER P" , B LEND= "A.RC","ARC " START=68,16, 1, END=113.24. 15
SINPUT IT EM = 'INTERP". BLEND="ARC", "ARC", START=II3, 1, 1. END=140,24. IS
"INPUT ITEM = "INTERP". BLEND="ARC", "ARC", START= 1, 1,10, END=68.24.IOS
SINPUT I TEM = "INTERP". BLEND= "ARC", "ARC", START=68,16,10, END=113,24. 105
SINPUT I T EM1 'INTERP". BLEND="ARC", "ARC", START=113, 1,10. END='40,24,1OS
SINPUT I T EM = "FIX" ,START=68,1, 1I END=1.13,16, I S
SINeL1J LIE "'FIX" ,START=68,1,10 ,END=113,16,1O S
SINPUT ITEM="CUT",BLOCK=1,START=1,1,1,,END=68,24,1,

IBLOCK=4,ISTA.RT=1, 1,10, IEND=68.24, 10$
S INPUT I TEM="CUT", BLOCK= 1, START=68.16.1, END= 113.24, 1,

IBLOCK=4, ISTART=68, 16,10, IEND=113,24. lOS
SINPUT ITEM="CUT".BLOCKLI,START=1131,1,END=140,24.,,

IBLOCK=4, ISTART=! 13, 1, 10, IEND='140, 24, 105
-iNPUT ITEM="CUT",BLOCK=I,START=1,1,10,END=68,24,10,

IBLOCK=2, ISTART=1, 1,1, IEND=68,24, 1$
SINPUT I TEM="CUT", BLOCK= I, START=68, 16, 10, END= 113, 24, 10,

IBLOCK=2, ISTART=68, 16,1, IEND=113,24, IS
3INPUT ITEM="CUT",BLOCK=1,START=113,1,10,END=140,24,iO,

IBLOCK=2, ISTART=113, 1,1, IEND=140,24, IS

152

$INPUT ITEM='CUT",BL-OCKt,2,START='I,i,10.END='68,24,I0,
IBLOCK=3, ISTART=1, 1,1, IEND=68,24. 1$

$INPUT ITEM'="CUT",BLOCK2,START68,16,10,END=113,24,10,
IBLOCK=3, ISTART=68,16, 1, IEND=113, 24, 1$

SINPUT ITEM="CUT",BLOCK=2,START113,1,10,END -140,24,10,
tBLOCK=3, IST.ART'113, 1,1, IEND=140,24, 1$

$INPUT ITEM='CUT" BLOCK=3,START=1, 1,1O,END-68,24, 10,
IBLOCK=4, ISTART=1,1,1, IEND=68,24, 1$

$INPUT ITEM="CUT",BLOCK=3,START=68,16,10,END=113,24,10,
IBLOCK=4, ISTART=68,16,1,IEND=113,24,1$

$INPUT ITEM='CUT",BLOCK=3,START=113,1,10,END-140,24,10,
IBLOCK=4, ISTART=113, 1, 1,IEND= 140, 24, IS

$INPU'T ITEM ="END" $
$OUTPUT ITEM ="ERROR", BLKERR="YES" S
$OUTPUT ITEM ="END' S

153

-ULTTPLE BODY CONFIGURATION

The EAGLE grid 6enerator has the capability to model complex, multibody

corifigurations. The configuration of the finned ogive-cylinder-ogive airframe

has been presented ,Iarlir. Figure 81 illustrates the basic geocetry of the

Dody --nd the orientation of the three-body combination. The grid is constructed

for ona-half of the configuration to take advantage of syminetry and reduce

subsequent computational costs of the flow solver. The generai dimensions of

tne overall grid are 145 x 39 x 37 with over 275,000 to.il points. The

,onfiuration is divided with a vertical plane passing between the two upper

bodLer and through the lower body. The resulting plane is cssentially treaited

_s a reflection plane. Figure lc shows a wireframe grid of the block

arrangement with the reflection plane being the flat lower surface. The arid is

made up of 30 blocks, arranged in three sections of 10 blocks each, stacked

axial ly as in the wireframe grid. A frontal view of the 1n-block arrangement in

the fin area is shown in Figure 82a, b. Six of the blocks are built around the

aodien; one block between each set of two fins. The remaining four blocks :are

field grid blocks extending to the outer boundary. A representative cross

section of the elliptic grid generated in 50 iterations is presented in

Fig.r P3. Figure 514 illustrates a side view of the grid through the upper

whole body. The grid around the body is a C-grid that is immersed in the

globai H-grid. The algebraic grid is shown in 4a and the elliptic grid in

4b. The elliptic solver smooths the grid and interface between the C and H

gri.ds while keeping a tight, consistent grid immediately adjacent to the

body. Generation of the 50 iteration elliptic grid took 687 CPU seconds on

the Cray X-MP. Storage requirements were 2.9 million words of in-core

memory and 8.22 million words of SSD memory.

154

0

0

4

00

CD4 r.4

-J * :

CD, 0

=15

LLd

-i Go

CDC

C.3 ..

£0 0

-I-4

Pr4

Cd

156

r4

0

4J

CL)

CD)

L4

157

.........

....

-

r i

Figure 84.
Algebraic Elliptic

Grid Cross Section,
Side View

158

Wing-Pylon-Store Grid

The grid developed for obtaining Euler solutions on the wing-pylon-store

configuration is a 30-block system containing approximately 200,000 points.

The overall structure, as depicted in Figure 85, is a C-O-type grid enclosing

the pylon and store with an H-type grid system surrounding the wing and the

C-O grid.

The grid defining the surfaces of the wing, pylon, and store was built

using operations in the EAGLE boundary code (Figure 86). Coordinates for tht

wing root and tip were read in, and then the wing jas built by interpolition.

The pylon, store, and sting were constructed according to dimensions and

specifications by building up curve segments and then rotating these curves,

or interpolatinr between them. The pylon was affixed smoothly to the wing

grid by inserting it into the lower wing surface through the INTSEC operation.

The boundary for the C-0 grid, which encloses the entire pylon, store,

and sting, was generated by rotating curves about an axis parallel to the

3tore. Each of these curves included an arc segment emanating from a point

ahead of the store nose and terminating at the leading edge of the wing at a

point to the right or left of the pylon. A second segment of the rotated

curves consisted of a spar line extracted from the lower wing grid, while the

third part extended from the wing trailing edge to the trailing far-field grid

boundary.

The C-0 grid itself consists of five blocks. Embedded within this

structure is a sixth block which fills the gap between the pylon and the upper

surface of the store, as shown in Figure 87. A cylindrical grid structure,

consisting of wedge-shaped quadrants, lies ahead of the C-a grid, extending

from the leading edge of the wing to the upstream far-field boundary.

The remainder of the grid system, consisting of 20 blocks, surrounds the

C-0 grid and the cylindrical system. These remaining blocks are nearly

rectangular except where they interface with the wing or curved segments of

the store and pylon grid structure. Each of these 20 blocks was built up with

operations in the EAGLE boundary code. The far-field boundaries were placed

40 store diamet-Irs upstream and downstream of the nose of the store, and 20

diameters outboard of the store.

The boundaries of the 30 blocks were used as input to the EAGLE elliptic

grid generator. Several preliminary runs were made before the final block

159

boundary configuration was arrived at. These preliminary runs were necessary

due to the unusual angles of intersection between the C-O grid and the lower

surface of the wing. The final code run was for 50 iterations of the elliptic

grid solver, requiring 526 CPU seconds on a Cray XMP/24 and nearly 24 million

-."D blocks moved.

160

4l-4

4 04

00

161

4

0
4ji

)

162

r~A-

I--It 'i

0

0

.±..iia

r-4

163

06

T-o

164U

